53 research outputs found

    Ubiquitous robust communications for emergency response using multi-operator heterogeneous networks

    Get PDF
    A number of disasters in various places of the planet have caused an extensive loss of lives, severe damages to properties and the environment, as well as a tremendous shock to the survivors. For relief and mitigation operations, emergency responders are immediately dispatched to the disaster areas. Ubiquitous and robust communications during the emergency response operations are of paramount importance. Nevertheless, various reports have highlighted that after many devastating events, the current technologies used, failed to support the mission critical communications, resulting in further loss of lives. Inefficiencies of the current communications used for emergency response include lack of technology inter-operability between different jurisdictions, and high vulnerability due to their centralized infrastructure. In this article, we propose a flexible network architecture that provides a common networking platform for heterogeneous multi-operator networks, for interoperation in case of emergencies. A wireless mesh network is the main part of the proposed architecture and this provides a back-up network in case of emergencies. We first describe the shortcomings and limitations of the current technologies, and then we address issues related to the applications and functionalities a future emergency response network should support. Furthermore, we describe the necessary requirements for a flexible, secure, robust, and QoS-aware emergency response multi-operator architecture, and then we suggest several schemes that can be adopted by our proposed architecture to meet those requirements. In addition, we suggest several methods for the re-tasking of communication means owned by independent individuals to provide support during emergencies. In order to investigate the feasibility of multimedia transmission over a wireless mesh network, we measured the performance of a video streaming application in a real wireless metropolitan multi-radio mesh network, showing that the mesh network can meet the requirements for high quality video transmissions

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    Get PDF
    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure fl ux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defi ned as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (inmost higher eukaryotes and some protists such as Dictyostelium ) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the fi eld understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation it is imperative to delete or knock down more than one autophagy-related gene. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways so not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field

    Seamless multimedia services over all-IP based infrastructures: the EVOLUTE approach

    Get PDF
    The increasing amount of roaming Internet users in combination with the evolution of IP-based applications has created a strong demand for wide-area, broadband access to a number of IP multimedia services. Wireless LANs can complement the next-generation cellular networks, by offering a cost-efficient, wireless broadband data solution for hot spot areas. By combining the wide coverage of next-generation cellular systems with the speed and capacity advantages of wireless LANs, users can make the most out of wireless IP communication. Towards this direction, IST project EVOLUTE implements an all IP network infrastructure aiming to provide seamless multimedia services to roaming users. EVOLUTE addresses and attempts to resolve issues, such as, multilayer mobility management, vertical handoffs, fast and scalable Authentication-Authorization-Accounting (AAA) mechanisms, and ubiquitous service provisioning among heterogeneous environments. User trials have been defined and VoIP applications have been selected among others, to test and validate the capabilities of the EVOLUTE architecture

    The indispensable contribution of s38 protein to ovarian-eggshell morphogenesis in Drosophila melanogaster

    No full text
    Abstract Drosophila chorion represents a remarkable model system for the in vivo study of complex extracellular-matrix architectures. For its organization and structure, s38 protein is considered as a component of major importance, since it is synthesized and secreted during early choriogenesis. However, there is no evidence that proves its essential, or redundant, role in chorion biogenesis. Hence, we show that targeted downregulation of s38 protein, specifically in the ovarian follicle-cell compartment, via employment of an RNAi-mediated strategy, causes generation of diverse dysmorphic phenotypes, regarding eggshell’s regionally and radially specialized structures. Downregulation of s38 protein severely impairs fly’s fertility and is unable to be compensated by the s36 homologous family member, thus unveiling s38 protein’s essential contribution to chorion’s assembly and function. Altogether, s38 acts as a key skeletal protein being critically implicated in the patterning establishment of a highly structured tripartite endochorion. Furthermore, it seems that s38 loss may sensitize choriogenesis to stochastic variation in its coordination and timing

    Malignancy grade-dependent mapping of metabolic landscapes in human urothelial bladder cancer: Identification of novel, diagnostic, and druggable biomarkers

    No full text
    Background: Urothelial bladder cancer (UBC) is one of the cancers with the highest mortality rate and prevalence worldwide; however, the clinical management of the disease remains challenging. Metabolomics has emerged as a powerful tool with beneficial applications in cancer biology and thus can provide new insights on the underlying mechanisms of UBC progression and/or reveal novel diagnostic and therapeutic schemes. Methods: A collection of four human UBC cell lines that critically reflect the different malignancy grades of UBC was employed; RT4 (grade I), RT112 (grade II), T24 (grade III), and TCCSUP (grade IV). They were examined using Nuclear Magnetic Resonance, Mass Spectrometry, and advanced statistical approaches, with the goal of creating new metabolic profiles that are mechanistically associated with UBC progression toward metastasis. Results: Distinct metabolic profiles were observed for each cell line group, with T24 (grade III) cells exhibiting the most abundant metabolite contents. AMP and creatine phosphate were highly increased in the T24 cell line compared to the RT4 (grade I) cell line, indicating the major energetic transformation to which UBC cells are being subjected during metastasis. Thymosin β4 and β10 were also profiled with grade-specific patterns of expression, strongly suggesting the importance of actin-cytoskeleton dynamics for UBC advancement to metastatic and drug-tolerant forms. Conclusions: The present study unveils a novel and putatively druggable metabolic signature that holds strong promise for early diagnosis and the successful chemotherapy of UBC disease. © 2020 by the authors. Licensee MDPI, Basel, Switzerland

    Donor-specific individuality of red blood cell performance during storage is partly a function of serum uric acid levels

    No full text
    BACKGROUND: Previous investigations in leukoreduced units of red blood cells (RBCs) in mannitol additive solution revealed the close association of uric acid (UA) levels in vivo with the susceptibility of RBCs to storage lesion markers. In this study, we examined whether UA has a similar correlation with the capability of RBCs to cope with the oxidative provocations of storage under different conditions, namely, in CPDA-1 and in the absence of leukoreduction. STUDY DESIGN AND METHODS: The UA-dependent antioxidant capacity of the supernatant was measured in nonleukoreduced units of RBCs in CPDA (n = 47). The possible effect of UA variability on the storage lesion profile was assessed by monitoring several physiologic properties of RBCs and supernatant, including cell shape, reactive oxygen species, and size distribution of extracellular vesicles, in units exhibiting the lowest or highest levels of UA activity (n = 16) among donors, throughout the storage period. RESULTS: In stored RBC units, the UA-dependent antioxidant activity of the supernatant declined as a function of storage duration but always in strong relation to the UA levels in fresh blood. Contrary to units of poor-UA activity, RBCs with the highest levels of UA activity exhibited better profile of calcium- and oxidative stress–driven modifications, including a significant decrease in the percentages of spherocytes and of 100- to 300-nm-sized vesicles, typically associated with the exovesiculation of stored RBCs. CONCLUSION: The antioxidant activity of UA is associated with donor-specific differences in the performance of RBCs under storage in nonleukoreduced CPDA units. © 2017 AAB

    From proteomic mapping to invasion‐metastasis‐cascade systemic biomarkering and targeted drugging of mutant braf‐dependent human cutaneous melanomagenesis

    No full text
    Melanoma is classified among the most notoriously aggressive human cancers. Despite the recent progress, due to its propensity for metastasis and resistance to therapy, novel biomarkers and oncogenic molecular drivers need to be promptly identified for metastatic melanoma. Hence, by employing nano liquid chromatography‐tandem mass spectrometry deep proteomics technology, advanced bioinformatics algorithms, immunofluorescence, western blotting, wound healing protocols, molecular modeling programs, and MTT assays, we comparatively examined the respective proteomic contents of WM115 primary (n = 3955 proteins) and WM266‐4 metastatic (n = 6681 proteins) melanoma cells. It proved that WM115 and WM266‐4 cells have engaged hybrid epithelialto‐mesenchymal transition/mesenchymal‐to‐epithelial transition states, with TGF‐β controlling their motility in vitro. They are characterized by different signatures of SOX‐dependent neural crestlike stemness and distinct architectures of the cytoskeleton network. Multiple signaling pathways have already been activated from the primary melanoma stage, whereas HIF1α, the major hypoxiainducible factor, can be exclusively observed in metastatic melanoma cells. Invasion‐metastasis cascade‐specific sub‐routines of activated Caspase‐3‐triggered apoptosis and LC3B‐II‐dependent constitutive autophagy were also unveiled. Importantly, WM115 and WM266‐4 cells exhibited diverse drug response profiles, with epirubicin holding considerable promise as a beneficial drug for metastatic melanoma clinical management. It is the proteome navigation that enables systemic biomarkering and targeted drugging to open new therapeutic windows for advanced disease. © 2021 by the authors. Licensee MDPI, Basel, Switzerland
    corecore