8 research outputs found

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Multiwavelength observations of GRB 140629A: a long burst with an achromatic jet break in the optical and X-ray afterglow

    No full text
    We investigate the long gamma-ray burst (GRB) 140629A through multiwavelength observations to derive the properties of the dominant jet and its host galaxy. Methods. The afterglow and host galaxy observations were taken in the optical (Swift/UVOT and various facilities worldwide), infrared (Spitzer), and X-rays (Swift/XRT) between 40 s and 3 yr after the burst trigger. Results. Polarisation observations by the MASTER telescope indicate that this burst is weakly polarised. The optical spectrum contains absorption features, from which we confirm the redshift of the GRB as originating at z=2.276 +/- 0.001. We performed spectral fitting of the X-rays to optical afterglow data and find there is no strong spectral evolution. We determine the hydrogen column density N-H to be 7.2 x 10(21) cm(-2) along the line of sight. The afterglow in this burst can be explained by a blast wave jet with a long-lasting central engine expanding into a uniform medium in the slow cooling regime. At the end of energy injection, a normal decay phase is observed in both the optical and X-ray bands. An achromatic jet break is also found in the afterglow light curves similar to 0.4 d after trigger. We fit the multiwavelength data simultaneously with a model based on a numerical simulation and find that the observations can be explained by a narrow uniform jet in a dense environment with an opening angle of 6.7 degrees viewed 3.8 degrees off-axis, which released a total energy of 1.4 x 10(54) erg. Using the redshift and opening angle, we find GRB 140629A follows both the Ghirlanda and Amati relations. From the peak time of the light curve, identified as the onset of the forward shock (181s after trigger), the initial Lorentz factor (Gamma(0)) is constrained in the range 82-118. Fitting the host galaxy photometry, we find the host to be a low mass, star-forming galaxy with a star formation rate of log (SFR) 1.1(-0.4)(+0.9) M(circle dot)log(SFR)=1.1-0.4+0.9M circle dotlog(SFR)=1.10.4+0.9M \log\mathrm{(SFR)}=1.1_{-0.4}{+0.9}\,M_\odot yr(-1). We obtain a value of the neutral hydrogen density by fitting the optical spectrum, log N-HI=21.0 +/- 0.3, classifying this host as a damped Lyman-alpha. High ionisation lines (NV, SiIV) are also detected in the spectrum.© ESO 2019Acknowledge the support by the program of China Scholarships Council (CSC) under the Grant no. 201406660015. We also acknowledge support from the Spanish MINEICO ministry and European FEDER funds AYA-2015-71718-R. SRO gratefully acknowledges the support of the Leverhulme Trust Early Career Fellowship. RS-R acknowledges support from ASI (Italian Space Agency) through the Contract no. 2015-046-R.0 and from European Union Horizon 2020 Programme under the AHEAD project (grant agreement no. 654215). MASTER equipment is supported by Lomonosov MSU Development Program and by Moscow Union OPTIKA. VL,EG, NT, VK are supported by BRICS RFBR grant 17-52-80133. MASTER-Tunka equipment is supported of Russian Federation Ministry of Science and High Education (grants 2019-05-592-0001-7293 and 2019-05-595-0001-2496). B.-B.Z. acknowledges support from the National Key Research and Development Program of China (2018YFA0404204), and NSFC-11833003. S.B.P. acknowledges BRICS grant DST/IMRCD/BRICS/Pilotcall/ProFCheap/2017(G) for this work. I.D. acknowledges L. Piro his invitation and financial support to visit and work at IAPS (Rome). We also acknowledge the use of the public data from the Swift data archive. We thank the excellent support form the GTC staff which is located at Observatorio del Roque de los Muchachos at Canary Islands (Spain). Thanks to the data support by NASA with Spitzer Space Telescope. SP and RB acknowledge support from RBRF grant 17-52-80139 BRICS-a. IHP acknowledges support from NRF 2018R1A2A1A05022685. Finally, we want to thank the anonymous referee for his/her comments, which have substantially improved the manuscrip

    A multi-wavelength analysis of a collection of short-duration GRBs observed between 2012-2015

    Full text link
    We investigate the prompt emission and the afterglow properties of short duration gamma-ray burst (sGRB) 130603B and another eight sGRB events during 2012-2015, observed by several multi-wavelength facilities including the GTC 10.4m telescope. Prompt emission high energy data of the events were obtained by INTEGRAL/SPI/ACS, Swift/BAT and Fermi/GBM satellites. The prompt emission data by INTEGRAL in the energy range of 0.1-10 MeV for sGRB 130603B, sGRB 140606A, sGRB 140930B, sGRB 141212A and sGRB 151228A do not show any signature of the extended emission or precursor activity and their spectral and temporal properties are similar to those seen in case of other short bursts. For sGRB130603B, our new afterglow photometric data constraints the pre jet-break temporal decay due to denser temporal coverage. For sGRB 130603B, the afterglow light curve, containing both our new as well as previously published photometric data is broadly consistent with the ISM afterglow model. Modeling of the host galaxies of sGRB 130603B and sGRB 141212A using the LePHARE software supports a scenario in which the environment of the burst is undergoing moderate star formation activity. From the inclusion of our late-time data for 8 other sGRBs we are able to; place tight constraints on the non-detection of the afterglow, host galaxy or any underlying kilonova emission. Our late-time afterglow observations of the sGRB 170817A/GW170817 are also discussed and compared with the sub-set of sGRBs
    corecore