367 research outputs found

    Detecting the Signatures of Uranus and Neptune

    Full text link
    With more than 15 years since the the first radial velocity discovery of a planet orbiting a Sun-like star, the time baseline for radial velocity surveys is now extending out beyond the orbit of Jupiter analogs. The sensitivity to exoplanet orbital periods beyond that of Saturn orbital radii however is still beyond our reach such that very few clues regarding the prevalence of ice giants orbiting solar analogs are available to us. Here we simulate the radial velocity, transit, and photometric phase amplitude signatures of the solar system giant planets, in particular Uranus and Neptune, and assess their detectability. We scale these results for application to monitoring low-mass stars and compare the relative detection prospects with other potential methods, such as astrometry and imaging. These results quantitatively show how many of the existing techniques are suitable for the detection of ice giants beyond the snow line for late-type stars and the challenges that lie ahead for the detection true Uranus/Neptune analogues around solar-type stars.Comment: 20 pages, 4 figures, accepted for publication in Icaru

    Determination of Ras-GTP and Ras-GDP in patients with acute myelogenous leukemia (AML), myeloproliferative syndrome (MPS), juvenile myelomonocytic leukemia (JMML), acute lymphocytic leukemia (ALL), and malignant lymphoma: assessment of mutational and indirect activation

    Get PDF
    The 21-kD protein Ras of the low-molecular-weight GTP-binding (LMWG) family plays an important role in transduction of extracellular signals. Ras functions as a ‘molecular switch’ in transduction of signals from the membrane receptors of many growth factors, cytokines, and other second messengers to the cell nucleus. Numerous studies have shown that in multiple malignant tumors and hematopoietic malignancies, faulty signal transduction via the Ras pathway plays a key role in tumorigenesis. In this work, a non-radioactive assay was used to quantify Ras activity in hematologic malignancies. Ras activation was measured in six different cell lines and 24 patient samples, and sequence analysis of N- and K-ras was performed. The 24 patient samples comprised of seven acute myelogenous leukemia (AML) samples, five acute lymphocytic leukemia (ALL) samples, four myeloproliferative disease (MPD) samples, four lymphoma samples, four juvenile myelomonocytic leukemia (JMML) samples, and WBC from a healthy donor. The purpose of this study was to compare Ras activity determined by percentage of Ras-GTP with the mutational status of the Ras gene in the hematopoietic cells of the patients. Mutation analysis revealed ras mutations in two of the seven AML samples, one in codon 12 and one in codon 61; ras mutations were also found in two of the four JMML samples, and in one of the four lymphoma samples (codon 12). We found a mean Ras activation of 23.1% in cell lines with known constitutively activating ras mutations, which was significantly different from cell lines with ras wildtype sequence (Ras activation of 4.8%). Two of the five activating ras mutations in the patient samples correlated with increased Ras activation. In the other three samples, Ras was probably activated through “upstream” or “downstream” mechanisms

    Double-blind test program for astrometric planet detection with Gaia

    Full text link
    We use detailed simulations of the Gaia observations of synthetic planetary systems and develop and utilize independent software codes in double-blind mode to analyze the data, including statistical tools for planet detection and different algorithms for single and multiple Keplerian orbit fitting that use no a priori knowledge of the true orbital parameters of the systems. 1) Planets with astrometric signatures α3\alpha\simeq 3 times the single-measurement error σψ\sigma_\psi and period P5P\leq 5 yr can be detected reliably, with a very small number of false positives. 2) At twice the detection limit, uncertainties in orbital parameters and masses are typically 1515%-20%. 3) Over 70% of two-planet systems with well-separated periods in the range 0.2P90.2\leq P\leq 9 yr, 2α/σψ502\leq\alpha/\sigma_\psi\leq 50, and eccentricity e0.6e\leq 0.6 are correctly identified. 4) Favorable orbital configurations have orbital elements measured to better than 10% accuracy >90> 90% of the time, and the value of the mutual inclination angle determined with uncertainties \leq 10^{\degr}. 5) Finally, uncertainties obtained from the fitting procedures are a good estimate of the actual errors. Extrapolating from the present-day statistical properties of the exoplanet sample, the results imply that a Gaia with σψ\sigma_\psi = 8 μ\muas, in its unbiased and complete magnitude-limited census of planetary systems, will measure several thousand giant planets out to 3-4 AUs from stars within 200 pc, and will characterize hundreds of multiple-planet systems, including meaningful coplanarity tests. Finally, we put Gaia into context, identifying several areas of planetary-system science in which Gaia can be expected to have a relevant impact, when combined with data coming from other ongoing and future planet search programs.Comment: 32 pages, 24 figures, 6 tables. Accepted for pubolication in A&

    On the convergence of the critical cooling timescale for the fragmentation of self-gravitating discs

    Full text link
    We carry out simulations of gravitationally unstable discs using a Smoothed Particle Hydrodynamics (SPH) code and a grid-based hydrodynamics code, FARGO, to understand the previous non-convergent results reported by Meru & Bate (2011a). We obtain evidence that convergence with increasing resolution occurs with both SPH and FARGO and in both cases we find that the critical cooling timescale is larger than previously thought. We show that SPH has a first-order convergence rate while FARGO converges with a second-order rate. We show that the convergence of the critical cooling timescale for fragmentation depends largely on the numerical viscosity employed in both SPH and FARGO. With SPH, particle velocity dispersion may also play a role. We show that reducing the dissipation from the numerical viscosity leads to larger values of the critical cooling time at a given resolution. For SPH, we find that the effect of the dissipation due to the numerical viscosity is somewhat larger than had previously been appreciated. In particular, we show that using a quadratic term in the SPH artificial viscosity (beta_{SPH}) that is too low appears to lead to excess dissipation in gravitationally unstable discs, which may affect any results that sensitively depend on the thermodynamics, such as disc fragmentation. We show that the two codes converge to values of the critical cooling timescale, beta_{crit} > 20 (for a ratio of specific heats of gamma=5/3), and perhaps even as large as beta_{crit} \approx 30. These are approximately 3-5 times larger than has been found by most previous studies. This is equivalent to a maximum gravitational stress that a disc can withstand without fragmenting of alpha_{GI,crit} \approx 0.013-0.02, which is much smaller than the values typically used in the literature. It is therefore easier for self-gravitating discs to fragment than has been concluded from most past studies.Comment: Accepted for publication by MNRAS. 26 pages, 17 figure

    Identifying Near Earth Object Families

    Full text link
    The study of asteroid families has provided tremendous insight into the forces that sculpted the main belt and continue to drive the collisional and dynamical evolution of asteroids. The identification of asteroid families within the NEO population could provide a similar boon to studies of their formation and interiors. In this study we examine the purported identification of NEO families by Drummond (2000) and conclude that it is unlikely that they are anything more than random fluctuations in the distribution of NEO osculating orbital elements. We arrive at this conclusion after examining the expected formation rate of NEO families, the identification of NEO groups in synthetic populations that contain no genetically related NEOs, the orbital evolution of the largest association identified by Drummond (2000), and the decoherence of synthetic NEO families intended to reproduce the observed members of the same association. These studies allowed us to identify a new criterion that can be used to select real NEO families for further study in future analyses, based on the ratio of the number of pairs and the size of strings to the number of objects in an identified association.Comment: Accepted for publication in Icarus. 19 pages including 11 figure

    Hyades dynamics from N-body simulations: Accuracy of astrometric radial velocities from Hipparcos

    Full text link
    The internal velocity structure in the Hyades cluster as seen by Hipparcos is compared with realistic N-body simulations using the NBODY6 code, which includes binary interaction, stellar evolution and the Galactic tidal field. The model allows to estimate reliably the accuracy of astrometric radial velocities in the Hyades as derived by Lindegren et al. (2000) and Madsen et al. (2002) from Hipparcos data, by applying the same estimation procedure on the simulated data. The simulations indicate that the current cluster velocity dispersion decreases from 0.35 km/s at the cluster centre to a minimum of 0.20 km/s at 8 pc radius (2-3 core radii), from where it slightly increases outwards. A clear negative correlation between dispersion and stellar mass is seen in the central part of the cluster but is almost absent beyond a radius of 3 pc. It follows that the (internal) standard error of the astrometric radial velocities relative to the cluster centroid may be as small as 0.2 km/s for a suitable selection of stars, while a total (external) standard error of 0.6 km/s is found when the uncertainty of the bulk motion of the cluster is included. Attempts to see structure in the velocity dispersion using observational data from Hipparcos and Tycho-2 are inconclusive.Comment: 12 pages, accepted by A&

    A Comparison of the Interiors of Jupiter and Saturn

    Full text link
    Interior models of Jupiter and Saturn are calculated and compared in the framework of the three-layer assumption, which rely on the perception that both planets consist of three globally homogeneous regions: a dense core, a metallic hydrogen envelope, and a molecular hydrogen envelope. Within this framework, constraints on the core mass and abundance of heavy elements (i.e. elements other than hydrogen and helium) are given by accounting for uncertainties on the measured gravitational moments, surface temperature, surface helium abundance, and on the inferred protosolar helium abundance, equations of state, temperature profile and solid/differential interior rotation.Comment: 25 pages, 6 tables, 10 figures Planetary and Space Science, in pres

    Holocene Atlantic climate variations deduced from carbonate peri-platform sediments (leeward margin, Great Bahama Bank)

    Get PDF
    A marine sediment core from the leeward margin of Great Bahama Bank (GBB) was subjected to a multiproxy study. The aragonite dominated core MD992201 comprises the past 7230 years in a decadal time resolution and shows sedimentation rates of up to 13.8 m/kyr. Aragonite mass accumulation rates, age differences between planktonic foraminifera and aragonite sediments, and temperature distribution are used to deduce changes in aragonite production rates and paleocurrent strengths. Aragonite precipitation rates on GBB are controlled by exchange of carbonate ions and CO2 loss due to temperature-salinity conditions and biological activity, and these are dependent on the current strength. Paleocurrent strengths on GBB show high current velocities during the periods 6000–5100 years BP, 3500–2700 years BP, and 1600–700 years BP; lower current speeds existed during the time intervals 5100–3500 years BP, 2700–1600 years BP, and 700–100 years BP. Bahamian surface currents are directly linked to the North Atlantic atmospheric circulation, and thus periods with high (low) current speeds are proposed to be phases of strong (weak) atmospheric circulation

    The PTF Orion Project: a Possible Planet Transiting a T-Tauri Star

    Get PDF
    We report observations of a possible young transiting planet orbiting a previously known weak-lined T-Tauri star in the 7-10 Myr old Orion-OB1a/25-Ori region. The candidate was found as part of the Palomar Transient Factory (PTF) Orion project. It has a photometric transit period of 0.448413 +- 0.000040 days, and appears in both 2009 and 2010 PTF data. Follow-up low-precision radial velocity (RV) observations and adaptive optics imaging suggest that the star is not an eclipsing binary, and that it is unlikely that a background source is blended with the target and mimicking the observed transit. RV observations with the Hobby-Eberly and Keck telescopes yield an RV that has the same period as the photometric event, but is offset in phase from the transit center by approximately -0.22 periods. The amplitude (half range) of the RV variations is 2.4 km/s and is comparable with the expected RV amplitude that stellar spots could induce. The RV curve is likely dominated by stellar spot modulation and provides an upper limit to the projected companion mass of M_p sin i_orb < 4.8 +- 1.2 M_Jup; when combined with the orbital inclination, i orb, of the candidate planet from modeling of the transit light curve, we find an upper limit on the mass of the planetary candidate of M_p < 5.5 +- 1.4 M_Jup. This limit implies that the planet is orbiting close to, if not inside, its Roche limiting orbital radius, so that it may be undergoing active mass loss and evaporation.Comment: Corrected typos, minor clarifications; minor updates/corrections to affiliations and bibliography. 35 pages, 10 figures, 3 tables. Accepted to Ap
    corecore