88 research outputs found

    Smallest aspect-ratio form-birefringence half-wave plate

    Get PDF
    International audienceSubwavelength 0th order gratings permit to create a phase-shift between the polarized 0th order grating modes propagating down the slits and grooves of a binary corrugation, and to transform the polarization of an incident beam. The phase-shift per unit height of the grating is an increasing function of the refractive index difference between ridges and grooves. If the ridges are made by photolithography in a resist or by polymer embossing, the low refractive index leads to a very large corrugation aspect ratio (approx. 4 for a half-wave phase-shift) that is difficult to fabricate and/or provides insufficient mechanical stability. If the ridges are made in a high index non-organic material (e.g. a semiconductor) the needed depth is reduced (although still notably larger than 1 for a half-wave phase-shift). However, in this case due to a more significant Fabry-Perot effect between the upper and lower boundaries of the 0th order grating, high transmission is guaranteed only if its resonance condition is ensured for both polarizations simultaneously. Using an inventive design by phase management of the involved grating modes we have found that all three conditions (pi phase-shift between TE and TM and both Fabry-Perot resonances) can indeed be satisfied in a binary grating of reasonable aspect ratio when the substrate has a refractive index notably smaller than the ridges

    Label-free plasmonic biosensor for rapid, quantitative, and highly sensitive COVID-19 serology: implementation and clinical validation

    Get PDF
    Serological tests are essential for the control and management of COVID-19 pandemic, not only for current and historical diagnostics but especially for surveillance, epidemiological, and acquired immunity studies. Clinical COVID-19 serology is routinely performed by enzymatic or chemiluminescence immunoassays (i.e., ELISA or CLIA), which provide good sensitivities at the expense of relatively long turnaround times and specialized laboratory settings. Rapid serological tests, based on lateral flow assays, have also been developed and widely commercialized, but they suffer from limited reliability due to relatively low sensitivity and specificity. We have developed and validated a direct serological biosensor assay employing proprietary technology based on Surface Plasmon Resonance (SPR). The biosensor offers a rapid -less than 15 min- identification and quantification of SARS-CoV-2 antibodies directly in clinical samples, without the need of any signal amplification. The portable plasmonic biosensor device employs a custom-designed multi-antigen sensor biochip, combining the two main viral antigens (RBD peptide and N protein), for simultaneous detection of human antibodies targeting both antigens. The SPR serology assay reaches detection limits in the low ng mL-1 range employing polyclonal antibodies as standard, which are well below the commonly detected antibody levels in COVID-19 patients. The assay has also been implemented employing the first WHO approved anti-SARS-CoV-2 immunoglobulin standard. We have carried out a clinical validation with COVID-19 positive and negative samples (n=120) that demonstrates the excellent diagnostic sensitivity (99%) and specificity (100%). This positions our biosensor device as an accurate, robust, and easy-to-use diagnostics tool for rapid and reliable COVID-19 serology to be employed both at laboratory and decentralized settings for the management of COVID-19 patients and for the evaluation of immunological status during vaccination, treatment or in front of emerging variants.H2020 Research and Innovation Programme of the European Commission Project, No. 101003544 Spanish Research Agency (AEI, grant no. SEV-2017-0706AEI, grant no. SEV-2017-0706) Spanish Ministry of Science and Innovation and the Spanish Research Agency and the European Social Fund (ESF)BES-2017-080527 GENCAT-DGRIS COVID EU H2020 Programme (644956) Plan Nacional de I+D+i 2013-2016 ISCIII- Ministerio de Ciencia e Innovación, Vall d’Hebron University Hospital Biobank PT17/0015/0047 European Virus Archive GLOBAL (EVA-GLOBAL) EU Horizon 2020 (grant agreement No. 871029) Fundació Glòria Soler for COVIDBANK collection Spanish Network for Research in Infectious Diseases (REIPI RD16/0016/0003)N

    Supporting information Label-Free Plasmonic Biosensor for Rapid, Quantitative, and Highly Sensitive COVID-19 Serology: Implementation and Clinical Validation

    Get PDF
    15 pages. -- Content: 1. Supplementary text: 1.1.Chemical and biological reagents; 1.2.SPR biosensor device; 1.3.Plasmonic sensor chip preparation; 1.4.Clinical samples collection; 1.5.Stratification of convalescent COVID patients. Samples collection from Clinic Hospital (Barcelona); 1.6. Standard analytical techniques (ELISA, CLIA and LFA); 1.7.Data analysis; 1.8.Diagnostic sensitivity and specificity. -- 2. Figures. -- Tables S1-S3. -- References.Serological tests are essential for the control and management of COVID-19 pandemic (diagnostics and surveillance, and epidemiological and immunity studies). We introduce a direct serological biosensor assay employing proprietary technology based on plasmonics, which offers rapid (<15 min) identification and quantification of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies in clinical samples, without signal amplification. The portable plasmonic device employs a custom-designed multiantigen (RBD peptide and N protein) sensor biochip and reaches detection limits in the low ng mL–1 range employing polyclonal antibodies. It has also been implemented employing the WHO-approved anti-SARS-CoV-2 immunoglobulin standard. A clinical validation with COVID-19 positive and negative samples (n = 120) demonstrates its excellent diagnostic sensitivity (99%) and specificity (100%). This positions our biosensor as an accurate and easy-to-use diagnostics tool for rapid and reliable COVID-19 serology to be employed both at laboratory and decentralized settings for the disease management and for the evaluation of immunological status during vaccination or treatment.Peer reviewe

    The SMC-5/6 Complex and the HIM-6 (BLM) Helicase Synergistically Promote Meiotic Recombination Intermediate Processing and Chromosome Maturation during<i> Caenorhabditis elegans</i> Meiosis

    Get PDF
    Meiotic recombination is essential for the repair of programmed double strand breaks (DSBs) to generate crossovers (COs) during meiosis. The efficient processing of meiotic recombination intermediates not only needs various resolvases but also requires proper meiotic chromosome structure. The Smc5/6 complex belongs to the structural maintenance of chromosome (SMC) family and is closely related to cohesin and condensin. Although the Smc5/6 complex has been implicated in the processing of recombination intermediates during meiosis, it is not known how Smc5/6 controls meiotic DSB repair. Here, using Caenorhabditis elegans we show that the SMC-5/6 complex acts synergistically with HIM-6, an ortholog of the human Bloom syndrome helicase (BLM) during meiotic recombination. The concerted action of the SMC-5/6 complex and HIM-6 is important for processing recombination intermediates, CO regulation and bivalent maturation. Careful examination of meiotic chromosomal morphology reveals an accumulation of inter-chromosomal bridges in smc-5; him-6 double mutants, leading to compromised chromosome segregation during meiotic cell divisions. Interestingly, we found that the lethality of smc-5; him-6 can be rescued by loss of the conserved BRCA1 ortholog BRC-1. Furthermore, the combined deletion of smc-5 and him-6 leads to an irregular distribution of condensin and to chromosome decondensation defects reminiscent of condensin depletion. Lethality conferred by condensin depletion can also be rescued by BRC-1 depletion. Our results suggest that SMC-5/6 and HIM-6 can synergistically regulate recombination intermediate metabolism and suppress ectopic recombination by controlling chromosome architecture during meiosis

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Semaglutide and cardiovascular outcomes in patients with obesity and prevalent heart failure: a prespecified analysis of the SELECT trial

    Get PDF
    Background: Semaglutide, a GLP-1 receptor agonist, reduces the risk of major adverse cardiovascular events (MACE) in people with overweight or obesity, but the effects of this drug on outcomes in patients with atherosclerotic cardiovascular disease and heart failure are unknown. We report a prespecified analysis of the effect of once-weekly subcutaneous semaglutide 2·4 mg on ischaemic and heart failure cardiovascular outcomes. We aimed to investigate if semaglutide was beneficial in patients with atherosclerotic cardiovascular disease with a history of heart failure compared with placebo; if there was a difference in outcome in patients designated as having heart failure with preserved ejection fraction compared with heart failure with reduced ejection fraction; and if the efficacy and safety of semaglutide in patients with heart failure was related to baseline characteristics or subtype of heart failure. Methods: The SELECT trial was a randomised, double-blind, multicentre, placebo-controlled, event-driven phase 3 trial in 41 countries. Adults aged 45 years and older, with a BMI of 27 kg/m2 or greater and established cardiovascular disease were eligible for the study. Patients were randomly assigned (1:1) with a block size of four using an interactive web response system in a double-blind manner to escalating doses of once-weekly subcutaneous semaglutide over 16 weeks to a target dose of 2·4 mg, or placebo. In a prespecified analysis, we examined the effect of semaglutide compared with placebo in patients with and without a history of heart failure at enrolment, subclassified as heart failure with preserved ejection fraction, heart failure with reduced ejection fraction, or unclassified heart failure. Endpoints comprised MACE (a composite of non-fatal myocardial infarction, non-fatal stroke, and cardiovascular death); a composite heart failure outcome (cardiovascular death or hospitalisation or urgent hospital visit for heart failure); cardiovascular death; and all-cause death. The study is registered with ClinicalTrials.gov, NCT03574597. Findings: Between Oct 31, 2018, and March 31, 2021, 17 604 patients with a mean age of 61·6 years (SD 8·9) and a mean BMI of 33·4 kg/m2 (5·0) were randomly assigned to receive semaglutide (8803 [50·0%] patients) or placebo (8801 [50·0%] patients). 4286 (24·3%) of 17 604 patients had a history of investigator-defined heart failure at enrolment: 2273 (53·0%) of 4286 patients had heart failure with preserved ejection fraction, 1347 (31·4%) had heart failure with reduced ejection fraction, and 666 (15·5%) had unclassified heart failure. Baseline characteristics were similar between patients with and without heart failure. Patients with heart failure had a higher incidence of clinical events. Semaglutide improved all outcome measures in patients with heart failure at random assignment compared with those without heart failure (hazard ratio [HR] 0·72, 95% CI 0·60-0·87 for MACE; 0·79, 0·64-0·98 for the heart failure composite endpoint; 0·76, 0·59-0·97 for cardiovascular death; and 0·81, 0·66-1·00 for all-cause death; all pinteraction&gt;0·19). Treatment with semaglutide resulted in improved outcomes in both the heart failure with reduced ejection fraction (HR 0·65, 95% CI 0·49-0·87 for MACE; 0·79, 0·58-1·08 for the composite heart failure endpoint) and heart failure with preserved ejection fraction groups (0·69, 0·51-0·91 for MACE; 0·75, 0·52-1·07 for the composite heart failure endpoint), although patients with heart failure with reduced ejection fraction had higher absolute event rates than those with heart failure with preserved ejection fraction. For MACE and the heart failure composite, there were no significant differences in benefits across baseline age, sex, BMI, New York Heart Association status, and diuretic use. Serious adverse events were less frequent with semaglutide versus placebo, regardless of heart failure subtype. Interpretation: In patients with atherosclerotic cardiovascular diease and overweight or obesity, treatment with semaglutide 2·4 mg reduced MACE and composite heart failure endpoints compared with placebo in those with and without clinical heart failure, regardless of heart failure subtype. Our findings could facilitate prescribing and result in improved clinical outcomes for this patient group. Funding: Novo Nordisk

    Canagliflozin and renal outcomes in type 2 diabetes and nephropathy

    Get PDF
    BACKGROUND Type 2 diabetes mellitus is the leading cause of kidney failure worldwide, but few effective long-term treatments are available. In cardiovascular trials of inhibitors of sodium–glucose cotransporter 2 (SGLT2), exploratory results have suggested that such drugs may improve renal outcomes in patients with type 2 diabetes. METHODS In this double-blind, randomized trial, we assigned patients with type 2 diabetes and albuminuric chronic kidney disease to receive canagliflozin, an oral SGLT2 inhibitor, at a dose of 100 mg daily or placebo. All the patients had an estimated glomerular filtration rate (GFR) of 30 to &lt;90 ml per minute per 1.73 m2 of body-surface area and albuminuria (ratio of albumin [mg] to creatinine [g], &gt;300 to 5000) and were treated with renin–angiotensin system blockade. The primary outcome was a composite of end-stage kidney disease (dialysis, transplantation, or a sustained estimated GFR of &lt;15 ml per minute per 1.73 m2), a doubling of the serum creatinine level, or death from renal or cardiovascular causes. Prespecified secondary outcomes were tested hierarchically. RESULTS The trial was stopped early after a planned interim analysis on the recommendation of the data and safety monitoring committee. At that time, 4401 patients had undergone randomization, with a median follow-up of 2.62 years. The relative risk of the primary outcome was 30% lower in the canagliflozin group than in the placebo group, with event rates of 43.2 and 61.2 per 1000 patient-years, respectively (hazard ratio, 0.70; 95% confidence interval [CI], 0.59 to 0.82; P=0.00001). The relative risk of the renal-specific composite of end-stage kidney disease, a doubling of the creatinine level, or death from renal causes was lower by 34% (hazard ratio, 0.66; 95% CI, 0.53 to 0.81; P&lt;0.001), and the relative risk of end-stage kidney disease was lower by 32% (hazard ratio, 0.68; 95% CI, 0.54 to 0.86; P=0.002). The canagliflozin group also had a lower risk of cardiovascular death, myocardial infarction, or stroke (hazard ratio, 0.80; 95% CI, 0.67 to 0.95; P=0.01) and hospitalization for heart failure (hazard ratio, 0.61; 95% CI, 0.47 to 0.80; P&lt;0.001). There were no significant differences in rates of amputation or fracture. CONCLUSIONS In patients with type 2 diabetes and kidney disease, the risk of kidney failure and cardiovascular events was lower in the canagliflozin group than in the placebo group at a median follow-up of 2.62 years

    D1.2 Handbook of multi-hazard, multi-risk definitions and concepts

    Get PDF
    This report is the first output of Work Package 1: Diagnosis of the MYRIAD-EU project: Handbook of Multi-hazard, Multi-Risk Definitions and Concepts. The aim of the task was to (i) acknowledge the differences and promote consistency in understanding across subsequent work packages in the MYRIAD-EU project, (ii) improve the accessibility of our work to a broad array of stakeholders and (iii) strengthen consensus across the hazard and risk community through a common understanding of multi-hazard, multi-risk terminology and concepts. The work encompassed a mixed-methods approach, including internal consultations and data-generating exercises; literature reviews; external stakeholder engagement; adopting and building on a rich existing body of established glossaries. 140 terms are included in the glossary, 102 related to multi-hazard, multi-risk, disaster risk management and an additional 38 due to their relevance to the project, acknowledging the need for a common understanding amongst an interdisciplinary project consortium. We also include extended definitions related to concepts particularly of relevance to this project deliverable, including ‘multi-hazard’, ‘hazard interrelationships’, ‘multi-risk’ and ‘direct and indirect loss and risk’. Underpinned by a literature review and internal consultation, we include a specific section on indicators, how these might be applied within a multi-hazard and multi-risk context, and how existing indicators could be adapted to consider multi-risk management. We emphasise that there are a number of established glossaries that the project (and risk community) should make use of to strengthen the impact of the work we do, noting in our literature review a tendency in papers and reports to define words afresh. We conclude the report with a selection of key observations, including terminology matters – for all aspects of disaster risk management, for example communication, data collection, measuring progress and reporting against Sendai Framework targets. At the same time, we discuss when is it helpful to include ‘multi-‘ as a prefix, questioning whether part of the paradigm shift needed to successfully address complex challenges facing an interconnected world is through inherently seeing vulnerability, exposure and disaster risk through the lens of multiple, interrelated hazards. We emphasise that there is likely to be an evolution of the terminology throughout the project lifetime as terms are emerge or shift as the project evolves. Finally, we propose a roadmap for developing and testing draft multi-risk indicators in MYRIAD-EU. The WP1 team would like to acknowledge all the contributions of the consortium on this task and the feedback from the External Advisory Board, in particular the chair of the board Virginia Murray, Head of Global Disaster Risk Reduction at the UK Health Security Agency, and the contribution of Jenty Kirsch-Wood, Head of Global Risk Management and Reporting at UNDRR, for her reflections on the findings of this work
    corecore