41 research outputs found
Tyrosine Kinase-Dependent Activation of Phospholipase Cγ Is Required for Calcium Transient in Xenopus Egg Fertilization
AbstractIn a previous study (K.-I. Sato et al., 1999, Dev. Biol. 209, 308–320), we presented evidence that a Src-related protein-tyrosine kinase (PTK), named Xyk, may act upstream of the calcium release in fertilization of the Xenopus egg. In the present study, we examined whether PTK activation of phospholipase Cγ (PLCγ) plays a role in the fertilization-induced calcium signaling. Immunoprecipitation studies show that Xenopus egg PLCγ is tyrosine phosphorylated and activated within a few minutes after fertilization but not after A23187-induced egg activation. Consistently, we observed a fertilization-induced association of PLCγ with Xyk activity that was not seen in A23187-activated eggs. A Src-specific PTK inhibitor, PP1, blocked effectively the fertilization-induced association of PLCγ with Xyk activity and up-regulation of PLCγ, when microinjected into the egg. In addition, a PLC inhibitor, U-73122, inhibited sperm-induced inositol 1,4,5-trisphosphate production and the calcium transient and subsequent calcium-dependent events such as cortical contraction, elevation of fertilization envelope, and tyrosine dephosphorylation of p42 MAP kinase, all of which were also inhibited by PP1. On the other hand, A23187 could cause the calcium response and calcium-dependent events in eggs injected with PP1 or U-73122. These results support the idea that Xenopus egg fertilization requires Src-family PTK-dependent PLCγ activity that acts upstream of the calcium-dependent signaling pathway
Evidence that phosphatidylinositol 3-kinase is involved in sperm-induced tyrosine kinase signaling in Xenopus egg fertilization
<p>Abstract</p> <p>Background</p> <p>Studies have examined the function of PI 3-kinase in the early developmental processes that operate in oocytes or early embryos of various species. However, the roles of egg-associated PI 3-kinase and Akt, especially in signal transduction at fertilization, are not well understood.</p> <p>Results</p> <p>Here we show that in <it>Xenopus </it>eggs, a potent inhibitor of phosphatidylinositol 3-kinase (PI 3-kinase), LY294002 inhibits sperm-induced activation of the tyrosine kinase Src and a transient increase in the intracellular concentration of Ca<sup>2+ </sup>at fertilization. LY294002 also inhibits sperm-induced dephosphorylation of mitogen-activated protein kinase, breakdown of cyclin B2 and Mos, and first embryonic cleavage, all of which are events of Ca<sup>2+</sup>-dependent egg activation. In fertilized eggs, an 85-kDa subunit of PI 3-kinase (p85) undergoes a transient translocation to the low-density, detergent-insoluble membranes (membrane microdomains) where Src tyrosine kinase signaling is operating. However, the tyrosine phosphorylation of p85 in fertilized eggs is not as evident as that in H2O2-activated eggs, arguing against the possibility that PI 3-kinase is activated by Src phosphorylation. Nevertheless, sperm-induced activation of PI 3-kinase has been demonstrated by the finding that Akt, a serine/threonine-specific protein kinase, is phosphorylated at threonine-308. The threonine-phosphorylated Akt also localizes to the membrane microdomains of fertilized eggs. Application of bp(V), an inhibitor of PTEN that dephosphorylates PIP3, the enzymatic product of PI 3-kinase, promotes parthenogenetic activation of <it>Xenopus </it>eggs. In vitro kinase assays demonstrate that PIP3 activates Src in a dose-dependent manner.</p> <p>Conclusions</p> <p>These results suggest that PI 3-kinase is involved in sperm-induced egg activation via production of PIP3 that would act as a positive regulator of the Src signaling pathway in <it>Xenopus </it>fertilization.</p
Biochemical evidence for the interaction of regulatory subunit of cAMP-dependent protein kinase with IDA (Inter-DFG-APE) region of catalytic subunit
AbstractTo explore the structural basis required for the holoenzyme formation of cAMP-dependent protein kinase, we have prepared rabbit anti-peptide antibodies that can block the holoenzyme formation without affecting the catalytic activity of the enzyme. The antibodies were raised against a specific site in the catalytic (C)-subunit, termed IDA (Inter-DFG-APE) region, which lies between the kinase subdomains VII and VIII. Although the C-subunit immunoprecipitated with anti-IDA antibodies could not form a stable complex with regulatory (R)-subunit, it was still susceptible to inhibition by the R-subunit or by PKI, a specific inhibitor peptide containing a pseudosubstrate site. These results indicate that there exists an IDA regionmediated interaction between the R- and C-subunits, which is distinct from that mediated through the substrate site and substrate binding site. In accordance with this idea, association of synthetic IDA peptides with the R-subunit was directly demonstrated by resonance mirror analysis. The calculated association constants of IDA peptides were high enough to suggest a possible involvement of the IDA region in the initial step of holoenzyme formation
Evidence for the Involvement of a Src-Related Tyrosine Kinase inXenopusEgg Activation
AbstractRecently, we have purified a Src-related tyrosine kinase, namedXenopustyrosine kinase (Xyk), from oocytes ofXenopus laevisand found that the enzyme is activated within 1 min following fertilization [Satoet al.(1996)J. Biol. Chem.271, 13250–13257]. A concomitant translocation of a part of the activated enzyme from the membrane fraction to the cytosolic fraction was also observed. In the present study, we show that parthenogenetic egg activation by a synthetic RGDS peptide [Y. Iwao and T. Fujimura, T. (1996)Dev. Biol.177, 558–567], an integrin-interacting peptide, but not by electrical shock or the calcium ionophore A23187 causes the kinase activation, tyrosine phosphorylation, and translocation of Xyk. A synthetic tyrosine kinase-specific inhibitor peptide was employed to analyze the importance of the Xyk activity in egg activation. We found that the peptide inhibits the kinase activity of purified Xyk at IC50of 8 μM. Further, egg activation induced by sperm or RGDS peptide but not by A23187 was inhibited by microinjection of the peptide. In the peptide-microinjected eggs, penetration of the sperm nucleus into the egg cytoplasm and meiotic resumption in the egg were blocked. Indirect immunofluorescence study demonstrates that Xyk is exclusively localized to the cortex ofXenopuseggs, indicating that Xyk can function in close proximity to the sperm–egg or RGDS peptide–egg interaction site. Taken together, these data suggest that the tyrosine kinase Xyk plays an important role in the early events ofXenopusegg activation in a manner independent or upstream of calcium signaling
SODALITE@RT: Orchestrating Applications on Cloud-Edge Infrastructures
AbstractIoT-based applications need to be dynamically orchestrated on cloud-edge infrastructures for reasons such as performance, regulations, or cost. In this context, a crucial problem is facilitating the work of DevOps teams in deploying, monitoring, and managing such applications by providing necessary tools and platforms. The SODALITE@RT open-source framework aims at addressing this scenario. In this paper, we present the main features of the SODALITE@RT: modeling of cloud-edge resources and applications using open standards and infrastructural code, and automated deployment, monitoring, and management of the applications in the target infrastructures based on such models. The capabilities of the SODALITE@RT are demonstrated through a relevant case study
Searching for a Stochastic Background of Gravitational Waves with LIGO
The Laser Interferometer Gravitational-wave Observatory (LIGO) has performed
the fourth science run, S4, with significantly improved interferometer
sensitivities with respect to previous runs. Using data acquired during this
science run, we place a limit on the amplitude of a stochastic background of
gravitational waves. For a frequency independent spectrum, the new limit is
. This is currently the most sensitive
result in the frequency range 51-150 Hz, with a factor of 13 improvement over
the previous LIGO result. We discuss complementarity of the new result with
other constraints on a stochastic background of gravitational waves, and we
investigate implications of the new result for different models of this
background.Comment: 37 pages, 16 figure
Upper limit map of a background of gravitational waves
We searched for an anisotropic background of gravitational waves using data
from the LIGO S4 science run and a method that is optimized for point sources.
This is appropriate if, for example, the gravitational wave background is
dominated by a small number of distinct astrophysical sources. No signal was
seen. Upper limit maps were produced assuming two different power laws for the
source strain power spectrum. For an f^-3 power law and using the 50 Hz to 1.8
kHz band the upper limits on the source strain power spectrum vary between
1.2e-48 Hz^-1 (100 Hz/f)^3 and 1.2e-47 Hz^-1 (100 Hz /f)^3, depending on the
position in the sky. Similarly, in the case of constant strain power spectrum,
the upper limits vary between 8.5e-49 Hz^-1 and 6.1e-48 Hz^-1.
As a side product a limit on an isotropic background of gravitational waves
was also obtained. All limits are at the 90% confidence level. Finally, as an
application, we focused on the direction of Sco-X1, the closest low-mass X-ray
binary. We compare the upper limit on strain amplitude obtained by this method
to expectations based on the X-ray luminosity of Sco-X1.Comment: 11 pages, 9 figures, 2 table
Upper limit map of a background of gravitational waves
We searched for an anisotropic background of gravitational waves using data
from the LIGO S4 science run and a method that is optimized for point sources.
This is appropriate if, for example, the gravitational wave background is
dominated by a small number of distinct astrophysical sources. No signal was
seen. Upper limit maps were produced assuming two different power laws for the
source strain power spectrum. For an f^-3 power law and using the 50 Hz to 1.8
kHz band the upper limits on the source strain power spectrum vary between
1.2e-48 Hz^-1 (100 Hz/f)^3 and 1.2e-47 Hz^-1 (100 Hz /f)^3, depending on the
position in the sky. Similarly, in the case of constant strain power spectrum,
the upper limits vary between 8.5e-49 Hz^-1 and 6.1e-48 Hz^-1.
As a side product a limit on an isotropic background of gravitational waves
was also obtained. All limits are at the 90% confidence level. Finally, as an
application, we focused on the direction of Sco-X1, the closest low-mass X-ray
binary. We compare the upper limit on strain amplitude obtained by this method
to expectations based on the X-ray luminosity of Sco-X1.Comment: 11 pages, 9 figures, 2 table
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
A gravitational-wave standard siren measurement of the Hubble constant
The detection of GW170817 (ref. 1) heralds the age of gravitational-wave multi-messenger astronomy, with the observations of gravitational-wave and electromagnetic emission from the same transient source. On 17 August 2017 the network of Advanced Laser Interferometer Gravitational-wave Observatory (LIGO)2 and Virgo3 detectors observed GW170817, a strong signal from the merger of a binary neutron-star system. Less than two seconds after the merger, a γ-ray burst event, GRB 170817A, was detected consistent with the LIGO–Virgo sky localization region4–6). The sky region was subsequently observed by optical astronomy facilities7, resulting in the identification of an optical transient signal within about 10 arcseconds of the galaxy NGC 4993 (refs 8–13). GW170817 can be used as a standard siren14–18, combining the distance inferred purely from the gravitational-wave signal with the recession velocity arising from the electromagnetic data to determine the Hubble constant. This quantity, representing the local expansion rate of the Universe, sets the overall scale of the Universe and is of fundamental importance to cosmology. Our measurements do not require any form of cosmic ‘distance ladder’19; the gravitational-wave analysis directly estimates the luminosity distance out to cosmological scales. Here we report H0 = kilometres per second per megaparsec, which is consistent with existing measurements20,21, while being completely independent of them