357 research outputs found

    Modeling the evolution of infrared galaxies : clustering of galaxies in the Cosmic Infrared Background

    Get PDF
    Star-forming galaxies are a highly biased tracer of the underlying dark matter density field. Their clustering can be studied through the cosmic infrared background anisotropies. These anisotropies have been measured from 100 \mum to 2 mm in the last few years. In this paper, we present a fully parametric model allowing a joint analysis of these recent observations. In order to develop a coherent model at various wavelengths, we rely on two building blocks. The first one is a parametric model that describes the redshift evolution of the luminosity function of star-forming galaxies. It compares favorably to measured differential number counts and luminosity functions. The second one is a halo model based description of the clustering of galaxies. Starting from a fiducial model, we investigate parameter degeneracies using a Fisher analysis. We then discuss how halo of different mass and redshift, how LIRGs and ULIRGs, contribute to the CIB angular power spectra. From the Fisher analysis, we conclude that we cannot constrain the parameters of the model of evolution of galaxies using clustering data only. The use of combined data of C\ell, counts and luminosity functions improves slightly the constraints but does not remove any degeneracies. On the contrary, the measurement of the anisotropies allows us to set interesting constraints on the halo model parameters, even if some strong degeneracies remain. Using our fiducial model, we establish that the 1-halo and 2-halo terms are not sensitive to the same mass regime. We also illustrate how the 1-halo term can be misinterpreted with the Poisson noise term. Conclusions. We present a new model of the clustering of infrared galaxies. However such a model has a few limitations, as the parameters of the halo occupation suffer from strong degeneracies.Comment: 18 pages, 16 figures, in press at A&A, the abstract has been modified to fit in arXiv requirement

    The VIMOS-VLT Deep Survey: Evolution in the Halo Occupation Number since z \sim 1

    Full text link
    We model the evolution of the mean galaxy occupation of dark-matter halos over the range 0.1<z<1.30.1<z<1.3, using the data from the VIMOS-VLT Deep Survey (VVDS). The galaxy projected correlation function wp(rp)w_p(r_p) was computed for a set of luminosity-limited subsamples and fits to its shape were obtained using two variants of Halo Occupation Distribution models. These provide us with a set of best-fitting parameters, from which we obtain the average mass of a halo and average number of galaxies per halo. We find that after accounting for the evolution in luminosity and assuming that we are largely following the same population, the underlying dark matter halo shows a growth in mass with decreasing redshift as expected in a hierarchical structure formation scenario. Using two different HOD models, we see that the halo mass grows by 90% over the redshift interval z=[0.5,1.0]. This is the first time the evolution in halo mass at high redshifts has been obtained from a single data survey and it follows the simple form seen in N-body simulations with M(z)=M0eβzM(z) = M_0 e^{-\beta z}, and β=1.3±0.30\beta = 1.3 \pm 0.30. This provides evidence for a rapid accretion phase of massive halos having a present-day mass M01013.5h1MM_0 \sim 10^{13.5} h^{-1} M_\odot, with a m>0.1M0m > 0.1 M_0 merger event occuring between redshifts of 0.5 and 1.0. Futhermore, we find that more luminous galaxies are found to occupy more massive halos irrespectively of the redshift. Finally, the average number of galaxies per halo shows little increase from redshift z\sim 1.0 to z\sim 0.5, with a sharp increase by a factor \sim3 from z\sim 0.5 to z\sim 0.1, likely due to the dynamical friction of subhalos within their host halos.Comment: 14 pages, 6 figures, 5 tables. MNRAS accepted

    The MgII Cross-section of Luminous Red Galaxies

    Full text link
    We describe a search for MgII(2796,2803) absorption lines in Sloan Digital Sky Survey (SDSS) spectra of QSOs whose lines of sight pass within impact parameters of 200 kpc of galaxies with photometric redshifts of z=0.46-0.6 and redshift errors Delta z~0.05. The galaxies selected have the same colors and luminosities as the Luminous Red Galaxy (LRG) population previously selected from the SDSS. A search for Mg II lines within a redshift interval of +/-0.1 of a galaxy's photometric redshift shows that absorption by these galaxies is rare: the covering fraction is ~ 10-15% between 20 and 100 kpc, for Mg II lines with rest equivalent widths of Wr >= 0.6{\AA}, falling to zero at larger separations. There is no evidence that Wr correlates with impact parameter or galaxy luminosity. Our results are consistent with existing scenarios in which cool Mg II-absorbing clouds may be absent near LRGs because of the environment of the galaxies: if LRGs reside in high-mass groups and clusters, either their halos are too hot to retain or accrete cool gas, or the galaxies themselves - which have passively-evolving old stellar populations - do not produce the rates of star formation and outflows of gas necessary to fill their halos with Mg II absorbing clouds. In the rarer cases where Mg II is detected, however, the origin of the absorption is less clear. Absorption may arise from the little cool gas able to reach into cluster halos from the intergalactic medium, or from the few star-forming and/or AGN-like LRGs that are known to exist.Comment: Accepted by ApJ; minor correction

    The Dark Matter Haloes and Host Galaxies of MgII Absorbers at z~1

    Get PDF
    Strong foreground absorption features from singly-ionized Magnesium (Mg II) are commonly observed in the spectra of quasars and are presumed to probe a wide range of galactic environments. To date, measurements of the average dark matter halo masses of intervening Mg II absorbers by way of large-scale cross-correlations with luminous galaxies have been limited to z<0.7. In this work we cross-correlate 21 strong (W{\lambda}2796>0.6 {\deg}A) Mg II absorption systems detected in quasar spectra from the Sloan Digital Sky Survey Data Release 7 with ~32,000 spectroscopically confirmed galaxies at 0.7<z<1.45 from the DEEP2 galaxy redshift survey. We measure dark matter (DM) halo biases of b_G=1.44\pm0.02 and b_A=1.49\pm0.45 for the DEEP2 galaxies and Mg II absorbers, respectively, indicating that their clustering amplitudes are roughly consistent. Haloes with the bias we measure for the Mg II absorbers have a corresponding mass of 1.8(+4.2/-1.6) \times 10^12h-1M_sun, although the actual mean absorber halo mass will depend on the precise distribution of absorbers within DM haloes. This mass estimate is consistent with observations at z=0.6, suggesting that the halo masses of typical Mg II absorbers do not significantly evolve from z~1. We additionally measure the average W{\lambda}2796>0.6 \AA gas covering fraction to be f =0.5 within 60 h-1kpc around the DEEP2 galaxies, and we find an absence of coincident strong Mg II absorption beyond a projected separation of ~40 h-1kpc. Although the star-forming z>1 DEEP2 galaxies are known to exhibit ubiquitous blueshifted Mg II absorption, we find no direct evidence in our small sample linking W{\lambda}2796>0.6 \AA absorbers to galaxies with ongoing star formation.Comment: 12 pages, 5 figures, Accepted to MNRA

    A group-galaxy cross-correlation function analysis in zCOSMOS

    Get PDF
    We present a group-galaxy cross-correlation analysis using a group catalog produced from the 16,500 spectra from the optical zCOSMOS galaxy survey. Our aim is to perform a consistency test in the redshift range 0.2 < z < 0.8 between the clustering strength of the groups and mass estimates that are based on the richness of the groups. We measure the linear bias of the groups by means of a group-galaxy cross-correlation analysis and convert it into mass using the bias-mass relation for a given cosmology, checking the systematic errors using realistic group and galaxy mock catalogs. The measured bias for the zCOSMOS groups increases with group richness as expected by the theory of cosmic structure formation and yields masses that are reasonably consistent with the masses estimated from the richness directly, considering the scatter that is obtained from the 24 mock catalogs. An exception are the richest groups at high redshift (estimated to be more massive than 10^13.5 M_sun), for which the measured bias is significantly larger than for any of the 24 mock catalogs (corresponding to a 3-sigma effect), which is attributed to the extremely large structure that is present in the COSMOS field at z ~ 0.7. Our results are in general agreement with previous studies that reported unusually strong clustering in the COSMOS field.Comment: 13 pages, 9 figures, published in Ap

    The redshift evolution of the distribution of star formation among dark matter halos as seen in the infrared

    Get PDF
    Recent studies revealed a strong correlation between the star formation rate (SFR) and stellar mass of star-forming galaxies, the so-called star-forming main sequence. An empirical modeling approach (2-SFM) which distinguishes between the main sequence and rarer starburst galaxies is capable of reproducing most statistical properties of infrared galaxies. In this paper, we extend this approach by establishing a connection between stellar mass and halo mass with the technique of abundance matching. Based on a few, simple assumptions and a physically motivated formalism, our model successfully predicts the (cross-)power spectra of the cosmic infrared background (CIB), the cross-correlation between CIB and cosmic microwave background (CMB) lensing, and the correlation functions of bright, resolved infrared galaxies measured by Herschel, Planck, ACT and SPT. We use this model to infer the redshift distribution these observables, as well as the level of correlation between CIB-anisotropies at different wavelengths. We also predict that more than 90% of cosmic star formation activity occurs in halos with masses between 10^11.5 and 10^13.5 Msun. Taking into account subsequent mass growth of halos, this implies that the majority of stars were initially (at z>3) formed in the progenitors of clusters, then in groups at 0.5<z<3 and finally in Milky-Way-like halos at z<0.5. At all redshifts, the dominant contribution to the star formation rate density stems from halos of mass ~10^12 Msun, in which the instantaneous star formation efficiency is maximal (~70%). The strong redshift-evolution of SFR in the galaxies that dominate the CIB is thus plausibly driven by increased accretion from the cosmic web onto halos of this characteristic mass scale

    The zCOSMOS Survey. The dependence of clustering on luminosity and stellar mass at z=0.2-1

    Get PDF
    We study the dependence of galaxy clustering on luminosity and stellar mass at redshifts z ~ [0.2-1] using the first zCOSMOS 10K sample. We measure the redshift-space correlation functions xi(rp,pi) and its projection wp(rp) for sub-samples covering different luminosity, mass and redshift ranges. We quantify in detail the observational selection biases and we check our covariance and error estimate techniques using ensembles of semi-analytic mock catalogues. We finally compare our measurements to the cosmological model predictions from the mock surveys. At odds with other measurements, we find a weak dependence of galaxy clustering on luminosity in all redshift bins explored. A mild dependence on stellar mass is instead observed. At z~0.7, wp(rp) shows strong excess power on large scales. We interpret this as produced by large-scale structure dominating the survey volume and extending preferentially in direction perpendicular to the line-of-sight. We do not see any significant evolution with redshift of the amplitude of clustering for bright and/or massive galaxies. The clustering measured in the zCOSMOS data at 0.5<z<1 for galaxies with log(M/M_\odot)>=10 is only marginally consistent with predictions from the mock surveys. On scales larger than ~2 h^-1 Mpc, the observed clustering amplitude is compatible only with ~1% of the mocks. Thus, if the power spectrum of matter is LCDM with standard normalization and the bias has no unnatural scale-dependence, this result indicates that COSMOS has picked up a particularly rare, ~2-3 sigma positive fluctuation in a volume of ~10^6 h^-1 Mpc^3. These findings underline the need for larger surveys of the z~1 Universe to appropriately characterize the level of structure at this epoch.Comment: 18 pages, 21 figures, accepted for publication in Astronomy and Astrophysic

    The Persistence of Cool Galactic Winds in High Stellar Mass Galaxies Between z~1.4 and ~1

    Full text link
    We present an analysis of the MgII 2796, 2803 and FeII 2586, 2600 absorption line profiles in coadded spectra of 468 galaxies at 0.7 < z < 1.5. The galaxy sample, drawn from the Team Keck Treasury Redshift Survey of the GOODS-N field, has a range in stellar mass (M_*) comparable to that of the sample at z~1.4 analyzed in a similar manner by Weiner et al. (2009; W09), but extends to lower redshifts and has specific star formation rates which are lower by ~0.6 dex. We identify outflows of cool gas from the Doppler shift of the MgII absorption lines and find that the equivalent width (EW) of absorption due to outflowing gas increases on average with M_* and star formation rate (SFR). We attribute the large EWs measured in spectra of the more massive, higher-SFR galaxies to optically thick absorbing clouds having large velocity widths. The outflows have hydrogen column densities N(H) > 10^19.3 cm^-2, and extend to velocities of ~500 km/s. While galaxies with SFR > 10 Msun/yr host strong outflows in both this and the W09 sample, we do not detect outflows in lower-SFR (i.e., log M_*/Msun < 10.5) galaxies at lower redshifts. Using a simple galaxy evolution model which assumes exponentially declining SFRs, we infer that strong outflows persist in galaxies with log M_*/Msun > 10.5 as they age between z=1.4 and z~1, presumably because of their high absolute SFRs. Finally, using high resolution HST/ACS imaging in tandem with our spectral analysis, we find evidence for a weak trend (at 1 sigma significance) of increasing outflow absorption strength with increasing galaxy SFR surface density.Comment: Submitted to ApJ. 25 pages, 19 figures, Figure 2 reduced in resolution. Uses emulateapj forma

    Clustering properties of galaxies selected in stellar mass: Breaking down the link between luminous and dark matter in massive galaxies from z=0 to z=2

    Full text link
    We present a study on the clustering of a stellar mass selected sample of 18,482 galaxies with stellar masses M*>10^10M(sun) at redshifts 0.4<z<2.0, taken from the Palomar Observatory Wide-field Infrared Survey. We examine the clustering properties of these stellar mass selected samples as a function of redshift and stellar mass, and discuss the implications of measured clustering strengths in terms of their likely halo masses. We find that galaxies with high stellar masses have a progressively higher clustering strength, and amplitude, than galaxies with lower stellar masses. We also find that galaxies within a fixed stellar mass range have a higher clustering strength at higher redshifts. We furthermore use our measured clustering strengths, combined with models from Mo & White (2002), to determine the average total masses of the dark matter haloes hosting these galaxies. We conclude that for all galaxies in our sample the stellar-mass-to-total-mass ratio is always lower than the universal baryonic mass fraction. Using our results, and a compilation from the literature, we furthermore show that there is a strong correlation between stellar-mass-to-total-mass ratio and derived halo masses for central galaxies, such that more massive haloes contain a lower fraction of their mass in the form of stars over our entire redshift range. For central galaxies in haloes with masses M(halo)>10^13M(sun) we find that this ratio is <0.02, much lower than the universal baryonic mass fraction. We show that the remaining baryonic mass is included partially in stars within satellite galaxies in these haloes, and as diffuse hot and warm gas. We also find that, at a fixed stellar mass, the stellar-to-total-mass ratio increases at lower redshifts. This suggests that galaxies at a fixed stellar mass form later in lower mass dark matter haloes, and earlier in massive haloes. We interpret this as a "halo downsizing" effect, however some of this evolution could be attributed to halo assembly bias.Comment: Accepted for publication in MNRAS. 19 pages, 8 figures and 3 tables
    corecore