366 research outputs found
Revised planet brightness temperatures using the Planck /LFI 2018 data release
Aims. We present new estimates of the brightness temperatures of Jupiter, Saturn, Uranus, and Neptune based on the measurements carried in 2009-2013 by Planck/LFI at 30, 44, and 70 GHz and released to the public in 2018. This work extends the results presented in the 2013 and 2015 Planck/LFI Calibration Papers, based on the data acquired in 2009-2011. Methods. Planck observed each planet up to eight times during the nominal mission. We processed time-ordered data from the 22 LFI radiometers to derive planet antenna temperatures for each planet and transit. We accounted for the beam shape, radiometer bandpasses, and several systematic effects. We compared our results with the results from the ninth year of WMAP, Planck/HFI observations, and existing data and models for planetary microwave emissivity. Results. For Jupiter, we obtain Tb = 144.9, 159.8, 170.5 K (\ub1 0.2 K at 1\u3c3, with temperatures expressed using the Rayleigh-Jeans scale) at 30, 44 and 70 GHz, respectively, or equivalently a band averaged Planck temperature Tb(ba) = 144.7, 160.3, 171.2 K in good agreement with WMAP and existing models. A slight excess at 30 GHz with respect to models is interpreted as an effect of synchrotron emission. Our measures for Saturn agree with the results from WMAP for rings Tb = 9.2 \ub1 1.4, 12.6 \ub1 2.3, 16.2 \ub1 0.8 K, while for the disc we obtain Tb = 140.0 \ub1 1.4, 147.2 \ub1 1.2, 150.2 \ub1 0.4 K, or equivalently a Tb(ba) = 139.7, 147.8, 151.0 K. Our measures for Uranus (Tb = 152 \ub1 6, 145 \ub1 3, 132.0 \ub1 2 K, or Tb(ba) = 152, 145, 133 K) and Neptune (Tb = 154 \ub1 11, 148 \ub1 9, 128 \ub1 3 K, or Tb(ba) = 154, 149, 128 K) agree closely with WMAP and previous data in literature
Simultaneous Planck, Swift, and Fermi observations of X-ray and gamma-ray selected blazars
We present simultaneous Planck, Swift, Fermi, and ground-based data for 105
blazars belonging to three samples with flux limits in the soft X-ray, hard
X-ray, and gamma-ray bands. Our unique data set has allowed us to demonstrate
that the selection method strongly influences the results, producing biases
that cannot be ignored. Almost all the BL Lac objects have been detected by
Fermi-LAT, whereas ~40% of the flat-spectrum radio quasars (FSRQs) in the
radio, soft X-ray, and hard X-ray selected samples are still below the
gamma-ray detection limit even after integrating 27 months of Fermi-LAT data.
The radio to sub-mm spectral slope of blazars is quite flat up to ~70GHz, above
which it steepens to ~-0.65. BL Lacs have significantly flatter spectra
than FSRQs at higher frequencies. The distribution of the rest-frame
synchrotron peak frequency (\nupS) in the SED of FSRQs is the same in all the
blazar samples with =10^13.1 Hz, while the mean inverse-Compton peak
frequency, , ranges from 10^21 to 10^22 Hz. The distributions of \nupS
and of \nupIC of BL Lacs are much broader and are shifted to higher energies
than those of FSRQs and strongly depend on the selection method. The Compton
dominance of blazars ranges from ~0.2 to ~100, with only FSRQs reaching values
>3. Its distribution is broad and depends strongly on the selection method,
with gamma-ray selected blazars peaking at ~7 or more, and radio-selected
blazars at values ~1, thus implying that the assumption that the blazar power
is dominated by high-energy emission is a selection effect. Simple SSC models
cannot explain the SEDs of most of the gamma-ray detected blazars in all
samples. The SED of the blazars that were not detected by Fermi-LAT may instead
be consistent with SSC emission. Our data challenge the correlation between
bolometric luminosity and \nupS predicted by the blazar sequence.Comment: Version accepted by A&A. Joint Planck, Swift, and Fermi
collaborations pape
The impact of urea-induced unfolding on the redox process of immobilised cytochrome c
We have studied the effect of urea-induced unfolding on the electron transfer process of yeast iso-1-cytochrome c and its mutant K72AK73AK79A adsorbed on electrodes coated by mixed 11-mercapto-1-undecanoic acid/11-mercapto-1-undecanol self-assembled monolayers. Electrochemical measurements, complemented by surface enhanced resonance Raman studies, indicate two distinct states of the adsorbed proteins that mainly differ with respect to the ligation pattern of the haem. The native state, in which the haem is axially coordinated by Met80 and His18, displays a reduction potential that slightly shifts to negative values with increasing urea concentration. At urea concentrations higher than 6 M, a second state prevails in which the Met80 ligand is replaced by an additional histidine residue. This structural change in the haem pocket is associated with an approximately 0.4 V shift of the reduction potential to negative values. These two states were found for both the wild-type protein and the mutant in which lysine residues 72, 73 and 79 had been substituted by alanines. The analysis of the reduction potentials, the reaction enthalpies and entropies as well as the rate constants indicates that these three lysine residues have an important effect on stabilising the protein structure in the adsorbed state and facilitating the electron transfer dynamics
Planck 2013 results. XXII. Constraints on inflation
We analyse the implications of the Planck data for cosmic inflation. The Planck nominal mission temperature anisotropy measurements, combined with the WMAP large-angle polarization, constrain the scalar spectral index to be ns = 0:9603 _ 0:0073, ruling out exact scale invariance at over 5_: Planck establishes an upper bound on the tensor-to-scalar ratio of r < 0:11 (95% CL). The Planck data thus shrink the space of allowed standard inflationary models, preferring potentials with V00 < 0. Exponential potential models, the simplest hybrid inflationary models, and monomial potential models of degree n _ 2 do not provide a good fit to the data. Planck does not find statistically significant running of the scalar spectral index, obtaining dns=dln k = 0:0134 _ 0:0090. We verify these conclusions through a numerical analysis, which makes no slowroll approximation, and carry out a Bayesian parameter estimation and model-selection analysis for a number of inflationary models including monomial, natural, and hilltop potentials. For each model, we present the Planck constraints on the parameters of the potential and explore several possibilities for the post-inflationary entropy generation epoch, thus obtaining nontrivial data-driven constraints. We also present a direct reconstruction of the observable range of the inflaton potential. Unless a quartic term is allowed in the potential, we find results consistent with second-order slow-roll predictions. We also investigate whether the primordial power spectrum contains any features. We find that models with a parameterized oscillatory feature improve the fit by __2 e_ _ 10; however, Bayesian evidence does not prefer these models. We constrain several single-field inflation models with generalized Lagrangians by combining power spectrum data with Planck bounds on fNL. Planck constrains with unprecedented accuracy the amplitude and possible correlation (with the adiabatic mode) of non-decaying isocurvature fluctuations. The fractional primordial contributions of cold dark matter (CDM) isocurvature modes of the types expected in the curvaton and axion scenarios have upper bounds of 0.25% and 3.9% (95% CL), respectively. In models with arbitrarily correlated CDM or neutrino isocurvature modes, an anticorrelated isocurvature component can improve the _2 e_ by approximately 4 as a result of slightly lowering the theoretical prediction for the ` <_ 40 multipoles relative to the higher multipoles. Nonetheless, the data are consistent with adiabatic initial conditions
BeyondPlanck II. CMB map-making through Gibbs sampling
We present a Gibbs sampling solution to the map-making problem for CMB
measurements, building on existing destriping methodology. Gibbs sampling
breaks the computationally heavy destriping problem into two separate steps;
noise filtering and map binning. Considered as two separate steps, both are
computationally much cheaper than solving the combined problem. This provides a
huge performance benefit as compared to traditional methods, and allows us for
the first time to bring the destriping baseline length to a single sample. We
apply the Gibbs procedure to simulated Planck 30 GHz data. We find that gaps in
the time-ordered data are handled efficiently by filling them with simulated
noise as part of the Gibbs process. The Gibbs procedure yields a chain of map
samples, from which we may compute the posterior mean as a best-estimate map.
The variation in the chain provides information on the correlated residual
noise, without need to construct a full noise covariance matrix. However, if
only a single maximum-likelihood frequency map estimate is required, we find
that traditional conjugate gradient solvers converge much faster than a Gibbs
sampler in terms of total number of iterations. The conceptual advantages of
the Gibbs sampling approach lies in statistically well-defined error
propagation and systematic error correction, and this methodology forms the
conceptual basis for the map-making algorithm employed in the BeyondPlanck
framework, which implements the first end-to-end Bayesian analysis pipeline for
CMB observations.Comment: 11 pages, 10 figures. All BeyondPlanck products and software will be
released publicly at http://beyondplanck.science during the online release
conference (November 18-20, 2020). Connection details will be made available
at the same website. Registration is mandatory for the online tutorial, but
optional for the conferenc
BeyondPlanck VII. Bayesian estimation of gain and absolute calibration for CMB experiments
We present a Bayesian calibration algorithm for CMB observations as
implemented within the global end-to-end BeyondPlanck (BP) framework, and apply
this to the Planck Low Frequency Instrument (LFI) data. Following the most
recent Planck analysis, we decompose the full time-dependent gain into a sum of
three orthogonal components: One absolute calibration term, common to all
detectors; one time-independent term that can vary between detectors; and one
time-dependent component that is allowed to vary between one-hour pointing
periods. Each term is then sampled conditionally on all other parameters in the
global signal model through Gibbs sampling. The absolute calibration is sampled
using only the orbital dipole as a reference source, while the two relative
gain components are sampled using the full sky signal, including the orbital
and Solar CMB dipoles, CMB fluctuations, and foreground contributions. We
discuss various aspects of the data that influence gain estimation, including
the dipole/polarization quadrupole degeneracy and anomalous jumps in the
instrumental gain. Comparing our solution to previous pipelines, we find good
agreement in general, with relative deviations of -0.84% (-0.67%) for 30 GHz,
-0.14% (0.02%) for 44 GHz and -0.69% (-0.08%) for 70 GHz, compared to Planck
2018 (NPIPE). The deviations we find are within expected error bounds, and we
attribute them to differences in data usage and general approach between the
pipelines. In particular, the BP calibration is performed globally, resulting
in better inter-frequency consistency. Additionally, WMAP observations are used
actively in the BP analysis, which breaks degeneracies in the Planck data set
and results in better agreement with WMAP. Although our presentation and
algorithm are currently oriented toward LFI processing, the procedure is fully
generalizable to other experiments.Comment: 18 pages, 15 figures. All BeyondPlanck products and software will be
released publicly at http://beyondplanck.science during the online release
conference (November 18-20, 2020). Connection details will be made available
at the same website. Registration is mandatory for the online tutorial, but
optional for the conferenc
BeyondPlanck XII. Cosmological parameter constraints with end-to-end error propagation
We present cosmological parameter constraints as estimated using the Bayesian
BeyondPlanck (BP) analysis framework. This method supports seamless end-to-end
error propagation from raw time-ordered data to final cosmological parameters.
As a first demonstration of the method, we analyze time-ordered Planck LFI
observations, combined with selected external data (WMAP 33-61GHz, Planck HFI
DR4 353 and 857GHz, and Haslam 408MHz) in the form of pixelized maps which are
used to break critical astrophysical degeneracies. Overall, all results are
generally in good agreement with previously reported values from Planck 2018
and WMAP, with the largest relative difference for any parameter of about 1
sigma when considering only temperature multipoles between 29<l<601. In cases
where there are differences, we note that the BP results are generally slightly
closer to the high-l HFI-dominated Planck 2018 results than previous analyses,
suggesting slightly less tension between low and high multipoles. Using low-l
polarization information from LFI and WMAP, we find a best-fit value of
tau=0.066 +/- 0.013, which is higher than the low value of tau=0.051 +/- 0.006
derived from Planck 2018 and slightly lower than the value of 0.069 +/- 0.011
derived from joint analysis of official LFI and WMAP products. Most
importantly, however, we find that the uncertainty derived in the BP processing
is about 30% larger than when analyzing the official products, after taking
into account the different sky coverage. We argue that this is due to
marginalizing over a more complete model of instrumental and astrophysical
parameters, and this results in both more reliable and more rigorously defined
uncertainties. We find that about 2000 Monte Carlo samples are required to
achieve robust convergence for low-resolution CMB covariance matrix with 225
independent modes.Comment: 13 pages, 10 figure
BeyondPlanck X. Planck LFI frequency maps with sample-based error propagation
We present Planck LFI frequency sky maps derived within the BeyondPlanck
framework. This framework draws samples from a global posterior distribution
that includes instrumental, astrophysical and cosmological parameters, and the
main product is an entire ensemble of frequency sky map samples. This ensemble
allows for computationally convenient end-to-end propagation of low-level
instrumental uncertainties into higher-level science products. We show that the
two dominant sources of LFI instrumental systematic uncertainties are
correlated noise and gain fluctuations, and the products presented here support
- for the first time - full Bayesian error propagation for these effects at
full angular resolution. We compare our posterior mean maps with traditional
frequency maps delivered by the Planck collaboration, and find generally good
agreement. The most important quality improvement is due to significantly lower
calibration uncertainties in the new processing, as we find a fractional
absolute calibration uncertainty at 70 GHz of , which is nominally 40 times smaller than that reported by Planck
2018. However, the original Planck 2018 estimate has a non-trivial statistical
interpretation, and this further illustrates the advantage of the new framework
in terms of producing self-consistent and well-defined error estimates of all
involved quantities without the need of ad hoc uncertainty contributions. We
describe how low-resolution data products, including dense pixel-pixel
covariance matrices, may be produced directly from the posterior samples
without the need for computationally expensive analytic calculations or
simulations. We conclude that posterior-based frequency map sampling provides
unique capabilities in terms of low-level systematics modelling and error
propagation, and may play an important role for future CMB B-mode experiments.
(Abridged.)Comment: 32 pages, 23 figures, data available from
https://www.cosmoglobe.uio.no
BeyondPlanck XI. Bayesian CMB analysis with sample-based end-to-end error propagation
We present posterior sample-based cosmic microwave background (CMB)
constraints from Planck LFI and WMAP observations derived through global
end-to-end Bayesian processing. We use these samples to study correlations
between CMB, foreground, and instrumental parameters, and we identify a
particularly strong degeneracy between CMB temperature fluctuations and
free-free emission on intermediate angular scales, which is mitigated through
model reduction, masking, and resampling. We compare our posterior-based CMB
results with previous Planck products, and find generally good agreement, but
with higher noise due to exclusion of HFI data. We find a best-fit CMB dipole
amplitude of , in excellent agreement with previous Planck
results. The quoted uncertainty is derived directly from the sampled posterior
distribution, and does not involve any ad hoc contribution for systematic
effects. Similarly, we find a temperature quadrupole amplitude of
, in good agreement with previous results in
terms of the amplitude, but the uncertainty is an order of magnitude larger
than the diagonal Fisher uncertainty. Relatedly, we find lower evidence for a
possible alignment between and than previously reported
due to a much larger scatter in the individual quadrupole coefficients, caused
both by marginalizing over a more complete set of systematic effects, and by
our more conservative analysis mask. For higher multipoles, we find that the
angular temperature power spectrum is generally in good agreement with both
Planck and WMAP. This is the first time the sample-based asymptotically exact
Blackwell-Rao estimator has been successfully established for multipoles up to
, and it now accounts for the majority of the cosmologically
important information. Cosmological parameter constraints are presented in a
companion paper. (Abriged)Comment: 26 pages, 24 figures. Submitted to A&A. Part of the BeyondPlanck
paper suit
BeyondPlanck XIV. Polarized foreground emission between 30 and 70GHz
We constrain polarized foreground emission between 30 and 70GHz with the
Planck Low Frequency Instrument (LFI) and WMAP data within the framework of
BeyondPlanck global Bayesian analysis. We combine for the first time
full-resolution Planck LFI time-ordered data with low-resolution WMAP sky maps
at 33, 40 and 61GHz. Spectral parameters are fit with a likelihood defined at
the native resolution of each frequency channel. This analysis represents the
first implementation of true multi-resolution component separation applied to
CMB observations for both amplitude and spectral energy distribution (SED)
parameters. For synchrotron emission, we approximate the SED as a power-law in
frequency and find that the low signal-to-noise ratio of the data set strongly
limits the number of free parameters that may be robustly constrained. We
partition the sky into four large disjoint regions (High Latitude; Galactic
Spur; Galactic Plane; and Galactic Center), each associated with its own
power-law index. We find that the High Latitude region is prior-dominated,
while the Galactic Center region is contaminated by residual instrumental
systematics. The two remaining regions appear to be both signal-dominated and
clean of systematics, and for these we derive spectral indices of
and . This agrees qualitatively with the WMAP-only
polarization constraints presented by Dunkley et al. (2009), but contrasts with
several temperature-based analyses. For thermal dust emission we assume a
modified blackbody model and we fit the power-law index across the full sky. We
find , which is slightly steeper than that
previously reported from Planck HFI data, but still statistically consistent at
a 2 confidence level.Comment: 17 pages, 14 figures. All BeyondPlanck products and software will be
released publicly at http://beyondplanck.science during the online release
conference (November 18-20, 2020). Connection details will be made available
at the same website. Registration is mandatory for the online tutorial, but
optional for the conferenc
- …