499 research outputs found

    The extended Hubbard model in the ionic limit

    Full text link
    In this paper, we study the Hubbard model with intersite Coulomb interaction in the ionic limit (i.e. no kinetic energy). It is shown that this model is isomorphic to the spin-1 Ising model in presence of a crystal field and an external magnetic field. We show that for such models it is possible to find, for any dimension, a finite complete set of eigenoperators and eigenvalues of the Hamiltonian. Then, the hierarchy of the equations of motion closes and analytical expressions for the relevant Green's functions and correlation functions can be obtained. These expressions are formal because these functions depend on a finite set of unknown parameters, and only a set of exact relations among the correlation functions can be derived. In the one-dimensional case we show that by means of algebraic constraints it is possible to obtain extra equations which close the set and allow us to obtain a complete exact solution of the model. The behavior of the relevant physical properties for the 1D system is reported.Comment: 19 pages, 9 figures, 16 panel

    Prune belly syndrome in a set of twins, a family tragedy: Case report

    Get PDF
    We report prune belly syndrome, a rare congenital malformation, in a set of twins delivered to a young couple with a history of three previous first  trimester spontaneous abortions, discordant HIV seropositivity and antenatal ultrasound report that indicated renal abnormalities in only one of the twins. The challenges of management are discussed.Keywords: Prune Belly Syndrome, Twins, Nigeria, Management challenge

    Heuristic Real-Time Detection of Temporal Gait Events for Lower Limb Amputees

    Get PDF
    This paper presents a complete system and algorithm to estimate temporal gait events during stance and inner-stance phases using a single inertial measurement unit (IMU) in real-time. Validation of the proposed system was carried out by placing the foot-switches (FSW) directly underneath the foot. The performance of the system was assessed with eleven control subjects (CS), one unilateral transfemoral amputee (TFA), and one unilateral transtibial amputee (TTA), while performing level ground walk and ramp activities. The experimental results showed reasonable agreement in timing differences of all the gait events in both groups when compared against the reference system. However, high data latency was observed for TFA in the case of Foot-Flat Start (FFS) and Heel-Off (HO). The slight variation in the positioning of IMU on the shank and the foot-switches underneath the foot and the difference in the kinematics of CS and lower limb amputees are probable reasons for large variations in the time difference. Overall, the detection accuracy was found to be 100% for Initial Contact, FFS, and Toe-Off, and 98.3% for HO. In addition, a high correlation was observed between estimated stance phase duration (SPD) from IMU and the SPD from FSW data. The proposed system showed high accuracy in the detection of temporal gait events which could potentially be employed in the gait analysis applications and the finite-state control of lower limb prostheses/orthoses

    Hidden attractors in fundamental problems and engineering models

    Full text link
    Recently a concept of self-excited and hidden attractors was suggested: an attractor is called a self-excited attractor if its basin of attraction overlaps with neighborhood of an equilibrium, otherwise it is called a hidden attractor. For example, hidden attractors are attractors in systems with no equilibria or with only one stable equilibrium (a special case of multistability and coexistence of attractors). While coexisting self-excited attractors can be found using the standard computational procedure, there is no standard way of predicting the existence or coexistence of hidden attractors in a system. In this plenary survey lecture the concept of self-excited and hidden attractors is discussed, and various corresponding examples of self-excited and hidden attractors are considered

    Properties of Graphene: A Theoretical Perspective

    Full text link
    In this review, we provide an in-depth description of the physics of monolayer and bilayer graphene from a theorist's perspective. We discuss the physical properties of graphene in an external magnetic field, reflecting the chiral nature of the quasiparticles near the Dirac point with a Landau level at zero energy. We address the unique integer quantum Hall effects, the role of electron correlations, and the recent observation of the fractional quantum Hall effect in the monolayer graphene. The quantum Hall effect in bilayer graphene is fundamentally different from that of a monolayer, reflecting the unique band structure of this system. The theory of transport in the absence of an external magnetic field is discussed in detail, along with the role of disorder studied in various theoretical models. We highlight the differences and similarities between monolayer and bilayer graphene, and focus on thermodynamic properties such as the compressibility, the plasmon spectra, the weak localization correction, quantum Hall effect, and optical properties. Confinement of electrons in graphene is nontrivial due to Klein tunneling. We review various theoretical and experimental studies of quantum confined structures made from graphene. The band structure of graphene nanoribbons and the role of the sublattice symmetry, edge geometry and the size of the nanoribbon on the electronic and magnetic properties are very active areas of research, and a detailed review of these topics is presented. Also, the effects of substrate interactions, adsorbed atoms, lattice defects and doping on the band structure of finite-sized graphene systems are discussed. We also include a brief description of graphane -- gapped material obtained from graphene by attaching hydrogen atoms to each carbon atom in the lattice.Comment: 189 pages. submitted in Advances in Physic

    Prevalence and Factors Associated with Intestinal Parasitic Infection among Children in an Urban Slum of Karachi

    Get PDF
    Background:Intestinal parasitic infections are endemic worldwide and have been described as constituting the greatest single worldwide cause of illness and disease. Poverty, illiteracy, poor hygiene, lack of access to potable water and hot and humid tropical climate are the factors associated with intestinal parasitic infections. The study aimed to estimate prevalence and identify factors associated with intestinal parasitic infections among 1 to 5 years old children residing in an urban slum of Karachi Pakistan. Methods And PrincipalFindings:A cross sectional survey was conducted from February to June 2006 in Ghosia Colony Gulshan Town Karachi, Pakistan. A simple random sample of 350 children aged 1-5 years was collected. The study used structured pre-tested questionnaire, anthropometric tools and stool tests to obtain epidemiological and disease data. Data were analyzed using appropriate descriptive, univariate and multivariable logistic regression methods. The mean age of participants was 2.8 years and 53% were male. The proportions of wasted, stunted and underweight children were 10.4%, 58.9% and 32.7% respectively. The prevalence of Intestinal parasitic infections was estimated to be 52.8% (95% CI: 46.1, 59.4). Giardia lamblia was the most common parasite followed by Ascaris lumbricoides, Blastocystis hominis and Hymenolepis nana. About 43% children were infected with single parasite and 10% with multiple parasites. Age {Adjusted Odds Ratio (aOR) = 1.5, 95% CI: 1.1, 1.9}, living in rented households (aOR = 2.0, 95% CI: 1.0, 3.9) and history of excessive crying (aOR = 1.9, 95% CI: 1.0, 3.4) were significantly associated with intestinal parasitic infections.Conclusion:Intestinal parasites are highly prevalent in this setting and poverty was implicated as an important risk factor for infection. Effective poverty reduction programmes and promotion of deworming could reduce intestinal parasite carriage. There is a need for mass scale campaigns to create awareness about health and hygiene

    FCC-hh: The Hadron Collider: Future Circular Collider Conceptual Design Report Volume 3

    Get PDF
    In response to the 2013 Update of the European Strategy for Particle Physics (EPPSU), the Future Circular Collider (FCC) study was launched as a world-wide international collaboration hosted by CERN. The FCC study covered an energy-frontier hadron collider (FCC-hh), a highest-luminosity high-energy lepton collider (FCC-ee), the corresponding 100 km tunnel infrastructure, as well as the physics opportunities of these two colliders, and a high-energy LHC, based on FCC-hh technology. This document constitutes the third volume of the FCC Conceptual Design Report, devoted to the hadron collider FCC-hh. It summarizes the FCC-hh physics discovery opportunities, presents the FCC-hh accelerator design, performance reach, and staged operation plan, discusses the underlying technologies, the civil engineering and technical infrastructure, and also sketches a possible implementation. Combining ingredients from the Large Hadron Collider (LHC), the high-luminosity LHC upgrade and adding novel technologies and approaches, the FCC-hh design aims at significantly extending the energy frontier to 100 TeV. Its unprecedented centre of-mass collision energy will make the FCC-hh a unique instrument to explore physics beyond the Standard Model, offering great direct sensitivity to new physics and discoveries
    • 

    corecore