484 research outputs found

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Corticosteroid-Induced Immunosuppression ultimately does not compromise the efficacy of antibiotherapy in murine mycobacterium ulcerans Infection

    Get PDF
    Buruli ulcer (BU) is a necrotizing disease of the skin, subcutaneous tissue and bone caused by Mycobacterium ulcerans. It has been suggested that the immune response developed during the recommended rifampicin/streptomycin (RS) antibiotherapy is protective, contributing to bacterial clearance. On the other hand, paradoxical reactions have been described during or after antibiotherapy, characterized by pathological inflammatory responses. This exacerbated inflammation could be circumvented by immunosuppressive drugs. Therefore, it is important to clarify if the immune system contributes to bacterial clearance during RS antibiotherapy and if immunosuppression hampers the efficacy of the antibiotic regimen. METHODOLOGY/PRINCIPAL FINDINGS: We used the M. ulcerans infection footpad mouse model. Corticosteroid-induced immunosuppression was achieved before experimental infection and maintained during combined RS antibiotherapy by the administration of dexamethasone (DEX). Time-lapsed analyses of macroscopic lesions, bacterial burdens, histology and immunohistochemistry were performed in M. ulcerans-infected footpads. We show here that corticosteroid-immunosuppressed mice are more susceptible to M. ulcerans, with higher bacterial burdens and earlier ulceration. Despite this, macroscopic lesions remised during combined antibiotic/DEX treatment and no viable bacteria were detected in the footpads after RS administration. This was observed despite a delayed kinetics in bacterial clearance, associated with a local reduction of T cell and neutrophil numbers, when compared with immunocompetent RS-treated mice. In addition, no relapse was observed following an additional 3 month period of DEX administration. CONCLUSIONS/SIGNIFICANCE: These findings reveal a major role of the RS bactericidal activity for the resolution of M. ulcerans experimental infections even during immunosuppression, and support clinical investigation on the potential use of corticosteroids or other immunosuppressive/anti-inflammatory drugs for the management of BU patients undergoing paradoxical reactions.This work was supported by a grant from the Health Services of Fundação Calouste Gulbenkian, and the Portuguese Science and Technology Foundation (FCT) fellowships SFRH/BD/41598/2007, SFRH/BPD/64032/2009, SFRH/BPD/68547/2010 and SFRH/BD/33573/2009 to TGM, GT, AGF, and JBG, respectively. MS is a Ciência 2007 fello

    MCOIN: a novel heuristic for determining transcription factor binding site motif width

    Get PDF
    BACKGROUND: In transcription factor binding site discovery, the true width of the motif to be discovered is generally not known a priori. The ability to compute the most likely width of a motif is therefore a highly desirable property for motif discovery algorithms. However, this is a challenging computational problem as a result of changing model dimensionality at changing motif widths. The complexity of the problem is increased as the discovered model at the true motif width need not be the most statistically significant in a set of candidate motif models. Further, the core motif discovery algorithm used cannot guarantee to return the best possible result at each candidate width. RESULTS: We present MCOIN, a novel heuristic for automatically determining transcription factor binding site motif width, based on motif containment and information content. Using realistic synthetic data and previously characterised prokaryotic data, we show that MCOIN outperforms the current most popular method (E-value of the resulting multiple alignment) as a predictor of motif width, based on mean absolute error. MCOIN is also shown to choose models which better match known sites at higher levels of motif conservation, based on ROC analysis. CONCLUSIONS: We demonstrate the performance of MCOIN as part of a deterministic motif discovery algorithm and conclude that MCOIN outperforms current methods for determining motif width

    Chondroitin sulfates and their binding molecules in the central nervous system

    Get PDF
    Chondroitin sulfate (CS) is the most abundant glycosaminoglycan (GAG) in the central nervous system (CNS) matrix. Its sulfation and epimerization patterns give rise to different forms of CS, which enables it to interact specifically and with a significant affinity with various signalling molecules in the matrix including growth factors, receptors and guidance molecules. These interactions control numerous biological and pathological processes, during development and in adulthood. In this review, we describe the specific interactions of different families of proteins involved in various physiological and cognitive mechanisms with CSs in CNS matrix. A better understanding of these interactions could promote a development of inhibitors to treat neurodegenerative diseases

    Combined measurement of differential and total cross sections in the H → γγ and the H → ZZ* → 4ℓ decay channels at s=13 TeV with the ATLAS detector

    Get PDF
    A combined measurement of differential and inclusive total cross sections of Higgs boson production is performed using 36.1 fb−1 of 13 TeV proton–proton collision data produced by the LHC and recorded by the ATLAS detector in 2015 and 2016. Cross sections are obtained from measured H→γγ and H→ZZ*(→4ℓ event yields, which are combined taking into account detector efficiencies, resolution, acceptances and branching fractions. The total Higgs boson production cross section is measured to be 57.0−5.9 +6.0 (stat.) −3.3 +4.0 (syst.) pb, in agreement with the Standard Model prediction. Differential cross-section measurements are presented for the Higgs boson transverse momentum distribution, Higgs boson rapidity, number of jets produced together with the Higgs boson, and the transverse momentum of the leading jet. The results from the two decay channels are found to be compatible, and their combination agrees with the Standard Model predictions

    Search for High-Mass Resonances Decaying to τν in pp Collisions at √s=13 TeV with the ATLAS Detector

    Get PDF
    A search for high-mass resonances decaying to τν using proton-proton collisions at √s=13 TeV produced by the Large Hadron Collider is presented. Only τ-lepton decays with hadrons in the final state are considered. The data were recorded with the ATLAS detector and correspond to an integrated luminosity of 36.1 fb−1. No statistically significant excess above the standard model expectation is observed; model-independent upper limits are set on the visible τν production cross section. Heavy W′ bosons with masses less than 3.7 TeV in the sequential standard model and masses less than 2.2–3.8 TeV depending on the coupling in the nonuniversal G(221) model are excluded at the 95% credibility level

    Operation and performance of the ATLAS Tile Calorimeter in Run 1

    Get PDF
    The Tile Calorimeter is the hadron calorimeter covering the central region of the ATLAS experiment at the Large Hadron Collider. Approximately 10,000 photomultipliers collect light from scintillating tiles acting as the active material sandwiched between slabs of steel absorber. This paper gives an overview of the calorimeter’s performance during the years 2008–2012 using cosmic-ray muon events and proton–proton collision data at centre-of-mass energies of 7 and 8TeV with a total integrated luminosity of nearly 30 fb−1. The signal reconstruction methods, calibration systems as well as the detector operation status are presented. The energy and time calibration methods performed excellently, resulting in good stability of the calorimeter response under varying conditions during the LHC Run 1. Finally, the Tile Calorimeter response to isolated muons and hadrons as well as to jets from proton–proton collisions is presented. The results demonstrate excellent performance in accord with specifications mentioned in the Technical Design Report
    corecore