22 research outputs found

    Mapping and modelling the geographical distribution and environmental limits of podoconiosis in Ethiopia

    Get PDF
    BACKGROUND Ethiopia is assumed to have the highest burden of podoconiosis globally, but the geographical distribution and environmental limits and correlates are yet to be fully investigated. In this paper we use data from a nationwide survey to address these issues. METHODOLOGY Our analyses are based on data arising from the integrated mapping of podoconiosis and lymphatic filariasis (LF) conducted in 2013, supplemented by data from an earlier mapping of LF in western Ethiopia in 2008-2010. The integrated mapping used woreda (district) health offices' reports of podoconiosis and LF to guide selection of survey sites. A suite of environmental and climatic data and boosted regression tree (BRT) modelling was used to investigate environmental limits and predict the probability of podoconiosis occurrence. PRINCIPAL FINDINGS Data were available for 141,238 individuals from 1,442 communities in 775 districts from all nine regional states and two city administrations of Ethiopia. In 41.9% of surveyed districts no cases of podoconiosis were identified, with all districts in Affar, Dire Dawa, Somali and Gambella regional states lacking the disease. The disease was most common, with lymphoedema positivity rate exceeding 5%, in the central highlands of Ethiopia, in Amhara, Oromia and Southern Nations, Nationalities and Peoples regional states. BRT modelling indicated that the probability of podoconiosis occurrence increased with increasing altitude, precipitation and silt fraction of soil and decreased with population density and clay content. Based on the BRT model, we estimate that in 2010, 34.9 (95% confidence interval [CI]: 20.2-51.7) million people (i.e. 43.8%; 95% CI: 25.3-64.8% of Ethiopia's national population) lived in areas environmentally suitable for the occurrence of podoconiosis. CONCLUSIONS Podoconiosis is more widespread in Ethiopia than previously estimated, but occurs in distinct geographical regions that are tied to identifiable environmental factors. The resultant maps can be used to guide programme planning and implementation and estimate disease burden in Ethiopia. This work provides a framework with which the geographical limits of podoconiosis could be delineated at a continental scale

    Mapping the geographical distribution of podoconiosis in Cameroon using parasitological, serological, and clinical evidence to exclude other causes of lymphedema

    Get PDF
    Background Podoconiosis is a non-filarial elephantiasis, which causes massive swelling of the lower legs. It was identified as a neglected tropical disease by WHO in 2011. Understanding of the geographical distribution of the disease is incomplete. As part of a global mapping of podoconiosis, this study was conducted in Cameroon to map the distribution of the disease. This mapping work will help to generate data on the geographical distribution of podoconiosis in Cameroon and contribute to the global atlas of podoconiosis. Methods We used a multi‐stage sampling design with stratification of the country by environmental risk of podoconiosis. We sampled 76 villages from 40 health districts from the ten Regions of Cameroon. All individuals of 15-years old or older in the village were surveyed house-to-house and screened for lymphedema. A clinical algorithm was used to reliably diagnose podoconiosis, excluding filarial-associated lymphedema. Individuals with lymphoedema were tested for circulating Wuchereria bancrofti antigen and specific IgG4 in the field using the Alere Filariasis Test Strips (FTS) test and the Standard Diagnostics (SD) BIOLINE lymphatic filariasis IgG4 test (Wb123) respectively, in addition to thick blood films. Presence of DNA specific to W.bancrofti was checked on night blood using a qPCR technique. Principal Findings Overall, 10,178 individuals from 4,603 households participated in the study. In total, 83 individuals with lymphedema were identified. Of the 83 individuals with lymphedema, two were found to be FTS positive and all were negative using the Wb123 test. No microfilaria of W. bancrofti were found in the night blood of any individual with clinical lymphedema. None were found to be positive for W. bancrofti using qPCR. Of the two FTS positive cases, one was positive for Mansonella perstans DNA, while the other harbored Loa loa microfilaria. Overall, 52 people with podoconiosis were identified after applying the clinical algorithm. The overall prevalence of podoconiosis was found to be 0.5% (95% [confidence interval] CI; 0.4-0.7). At least one case of podoconiosis was found in every region of Cameroon except the two surveyed villages in Adamawa. Of the 40 health districts surveyed, 17 districts had no cases of podoconiosis; in 15 districts, mean prevalence was between 0.2% and 1.0%; and in the remaining eight, mean prevalence was between 1.2% and 2.7%. Conclusions Our investigation has demonstrated low prevalence but almost nationwide distribution of podoconiosis in Cameroon. Designing a podoconiosis control program is a vital next step. A health system response to the burden of podoconiosis is important, through case surveillance and morbidity management services

    Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-Adjusted life-years for 29 cancer groups, 1990 to 2017 : A systematic analysis for the global burden of disease study

    Get PDF
    Importance: Cancer and other noncommunicable diseases (NCDs) are now widely recognized as a threat to global development. The latest United Nations high-level meeting on NCDs reaffirmed this observation and also highlighted the slow progress in meeting the 2011 Political Declaration on the Prevention and Control of Noncommunicable Diseases and the third Sustainable Development Goal. Lack of situational analyses, priority setting, and budgeting have been identified as major obstacles in achieving these goals. All of these have in common that they require information on the local cancer epidemiology. The Global Burden of Disease (GBD) study is uniquely poised to provide these crucial data. Objective: To describe cancer burden for 29 cancer groups in 195 countries from 1990 through 2017 to provide data needed for cancer control planning. Evidence Review: We used the GBD study estimation methods to describe cancer incidence, mortality, years lived with disability, years of life lost, and disability-Adjusted life-years (DALYs). Results are presented at the national level as well as by Socio-demographic Index (SDI), a composite indicator of income, educational attainment, and total fertility rate. We also analyzed the influence of the epidemiological vs the demographic transition on cancer incidence. Findings: In 2017, there were 24.5 million incident cancer cases worldwide (16.8 million without nonmelanoma skin cancer [NMSC]) and 9.6 million cancer deaths. The majority of cancer DALYs came from years of life lost (97%), and only 3% came from years lived with disability. The odds of developing cancer were the lowest in the low SDI quintile (1 in 7) and the highest in the high SDI quintile (1 in 2) for both sexes. In 2017, the most common incident cancers in men were NMSC (4.3 million incident cases); tracheal, bronchus, and lung (TBL) cancer (1.5 million incident cases); and prostate cancer (1.3 million incident cases). The most common causes of cancer deaths and DALYs for men were TBL cancer (1.3 million deaths and 28.4 million DALYs), liver cancer (572000 deaths and 15.2 million DALYs), and stomach cancer (542000 deaths and 12.2 million DALYs). For women in 2017, the most common incident cancers were NMSC (3.3 million incident cases), breast cancer (1.9 million incident cases), and colorectal cancer (819000 incident cases). The leading causes of cancer deaths and DALYs for women were breast cancer (601000 deaths and 17.4 million DALYs), TBL cancer (596000 deaths and 12.6 million DALYs), and colorectal cancer (414000 deaths and 8.3 million DALYs). Conclusions and Relevance: The national epidemiological profiles of cancer burden in the GBD study show large heterogeneities, which are a reflection of different exposures to risk factors, economic settings, lifestyles, and access to care and screening. The GBD study can be used by policy makers and other stakeholders to develop and improve national and local cancer control in order to achieve the global targets and improve equity in cancer care. © 2019 American Medical Association. All rights reserved.Peer reviewe

    Global, regional, and national burden of epilepsy, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016

    Get PDF
    Background Seizures and their consequences contribute to the burden of epilepsy because they can cause health loss (premature mortality and residual disability). Data on the burden of epilepsy are needed for health-care planning and resource allocation. The aim of this study was to quantify health loss due to epilepsy by age, sex, year, and location using data from the Global Burden of Diseases, Injuries, and Risk Factors Study. Methods We assessed the burden of epilepsy in 195 countries and territories from 1990 to 2016. Burden was measured as deaths, prevalence, and disability-adjusted life-years (DALYs; a summary measure of health loss defined by the sum of years of life lost [YLLs] for premature mortality and years lived with disability), by age, sex, year, location, and Socio-demographic Index (SDI; a compound measure of income per capita, education, and fertility). Vital registrations and verbal autopsies provided information about deaths, and data on the prevalence and severity of epilepsy largely came from population representative surveys. All estimates were calculated with 95% uncertainty intervals (UIs). Findings In 2016, there were 45·9 million (95% UI 39·9–54·6) patients with all-active epilepsy (both idiopathic and secondary epilepsy globally; age-standardised prevalence 621·5 per 100 000 population; 540·1–737·0). Of these patients, 24·0 million (20·4–27·7) had active idiopathic epilepsy (prevalence 326·7 per 100 000 population; 278·4–378·1). Prevalence of active epilepsy increased with age, with peaks at 5–9 years (374·8 [280·1–490·0]) and at older than 80 years of age (545·1 [444·2–652·0]). Age-standardised prevalence of active idiopathic epilepsy was 329·3 per 100 000 population (280·3–381·2) in men and 318·9 per 100 000 population (271·1–369·4) in women, and was similar among SDI quintiles. Global age-standardised mortality rates of idiopathic epilepsy were 1·74 per 100 000 population (1·64–1·87; 1·40 per 100 000 population [1·23–1·54] for women and 2·09 per 100 000 population [1·96–2·25] for men). Age-standardised DALYs were 182·6 per 100 000 population (149·0–223·5; 163·6 per 100 000 population [130·6–204·3] for women and 201·2 per 100 000 population [166·9–241·4] for men). The higher DALY rates in men were due to higher YLL rates compared with women. Between 1990 and 2016, there was a non-significant 6·0% (−4·0 to 16·7) change in the age-standardised prevalence of idiopathic epilepsy, but a significant decrease in age-standardised mortality rates (24·5% [10·8 to 31·8]) and age-standardised DALY rates (19·4% [9·0 to 27·6]). A third of the difference in age-standardised DALY rates between low and high SDI quintile countries was due to the greater severity of epilepsy in low-income settings, and two-thirds were due to a higher YLL rate in low SDI countries. Interpretation Despite the decrease in the disease burden from 1990 to 2016, epilepsy is still an important cause of disability and mortality. Standardised collection of data on epilepsy in population representative surveys will strengthen the estimates, particularly in countries for which we currently have no or sparse data and if additional data is collected on severity, causes, and treatment. Sizeable gains in reducing the burden of epilepsy might be expected from improved access to existing treatments in low-income countries and from the development of new effective drugs worldwide

    Global burden of cardiovascular diseases and risk factors, 1990–2019: update from the GBD 2019 study

    Get PDF
    Cardiovascular diseases (CVDs), principally ischemic heart disease (IHD) and stroke, are the leading cause of global mortality and a major contributor to disability. This paper reviews the magnitude of total CVD burden, including 13 underlying causes of cardiovascular death and 9 related risk factors, using estimates from the Global Burden of Disease (GBD) Study 2019. GBD, an ongoing multinational collaboration to provide comparable and consistent estimates of population health over time, used all available population-level data sources on incidence, prevalence, case fatality, mortality, and health risks to produce estimates for 204 countries and territories from 1990 to 2019. Prevalent cases of total CVD nearly doubled from 271 million (95% uncertainty interval [UI]: 257 to 285 million) in 1990 to 523 million (95% UI: 497 to 550 million) in 2019, and the number of CVD deaths steadily increased from 12.1 million (95% UI:11.4 to 12.6 million) in 1990, reaching 18.6 million (95% UI: 17.1 to 19.7 million) in 2019. The global trends for disability-adjusted life years (DALYs) and years of life lost also increased significantly, and years lived with disability doubled from 17.7 million (95% UI: 12.9 to 22.5 million) to 34.4 million (95% UI:24.9 to 43.6 million) over that period. The total number of DALYs due to IHD has risen steadily since 1990, reaching 182 million (95% UI: 170 to 194 million) DALYs, 9.14 million (95% UI: 8.40 to 9.74 million) deaths in the year 2019, and 197 million (95% UI: 178 to 220 million) prevalent cases of IHD in 2019. The total number of DALYs due to stroke has risen steadily since 1990, reaching 143 million (95% UI: 133 to 153 million) DALYs, 6.55 million (95% UI: 6.00 to 7.02 million) deaths in the year 2019, and 101 million (95% UI: 93.2 to 111 million) prevalent cases of stroke in 2019. Cardiovascular diseases remain the leading cause of disease burden in the world. CVD burden continues its decades-long rise for almost all countries outside high-income countries, and alarmingly, the age-standardized rate of CVD has begun to rise in some locations where it was previously declining in high-income countries. There is an urgent need to focus on implementing existing cost-effective policies and interventions if the world is to meet the targets for Sustainable Development Goal 3 and achieve a 30% reduction in premature mortality due to noncommunicable diseases
    corecore