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Abstract. In this paper, we construct boundary-domain integral equations (BDIEs)
of the Dirichlet and mixed boundary value problems for a two-dimensional variable-
coefficient Helmholtz equation. Using an appropriate parametrix, these problems
are reduced to several BDIE systems. It is shown that the BVPs and the formu-
lated BDIE systems are equivalent. Fredholm properties and unique solvability
and invertibility of BDIE systems are investigated in appropriate Sobolev spaces.

1. Introduction

Many problems of mathematical physics and engineering such as the ones as-
sociated with steady-state oscillations (mechanical, acoustic, electromagnetic, etc.)
lead to the Helmholtz equation. Since the fundamental solution of the constant-
coefficient Helmholtz equation is known explicitly, the boundary value problems
(BVPs) for this equation can be reduced to the boundary integral equations (BIEs),
which have the advantage that the dimension of the problem is reduced by one and
the BIEs could be effectively solved numerically.

In applications, such as seismic or medical imaging, the coefficients in the Helm-
holtz equation become variable [26]. For such partial differential equations (PDEs)
with variable coefficients a fundamental solution is generally not available in explicit
form, preventing reduction of BVPs for such PDEs to explicit BIEs. Instead, one
can use a parametrix (Levi function), which is more widely available, to reduce the
variable-coefficient BVPs to either segregated or united direct boundary-domain
integral or integro-differential equations [19], BDIEs or BDIDEs. These equations
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are well studied for Dirichlet, Neumann and Mixed (Dirichlet-Neumann) BVPs for
variable-coefficient second order scalar elliptic PDE

Au(x) :=
n∑
i=1

∂

∂xi

[
a(x)

∂u(x)

∂xi

]
= f(x), x ∈ Ω (1.1)

in 3D [6, 7, 20, 8, 9, 23, 24] as well as in 2D [13, 4, 5].
However, this is not the case for the parametrix-based system of BDIEs for

variable-coefficient Helmholtz equation

Au(x) + k2(x)u(x) = f(x), x ∈ Ω (1.2)

where k(x) is a real function of x, a(x) is a known variable coefficient, u is an
unknown function and f ∈ L2(Ω) is a given function. Note that when Ω = Rn and
k(x) is constant outside a bounded domain, equation (1.2) can be reduced to the
Lippmann-Schwinger type integral equation, see, e.g., [15, Section 8] for the case
when a(x) is a constant in Rn, and [16, 11, 17] for the case when a(x) is a constant
only outside a bounded domain in Rn. In both cases the integral equations can
be considered as special cases of BDIEs. We also mention [1], where the numerical
solutions of BDIE and BDIDE of the mixed problem for PDE (1.2) are given (without
analysis of the equivalence to the BVP or the solution existence and uniqueness).

Applying the previously developed techniques for the operator A in (1.1), in
this paper we shall construct and investigate BDIE systems for the Dirichlet and
mixed (Dirichlet-Neumann) BVPs associated with PDE (1.2) in appropriate func-
tion spaces in the two-dimensional case. The BDIEs in the n−dimensional cases
with n ≥ 3 can also be analysed in a similar way, although the scaling with the
parameter r0 in the parametrix will not be needed in such cases because the invert-
ibility of the standard single layer potential operator will not depend on the domain
size then.

2. preliminaries

Let Ω be a domain in R2 bounded by a smooth curve ∂Ω. The set of all infinitely
differentiable functions on Ω with compact support is denoted by D(Ω). The func-
tion space D′(Ω) consists of all continuous linear functionals over D(Ω). The space
of restrictions to Ω of functions in D(R2) is denoted by D(Ω). The space Hs(R2),
s ∈ R, denotes the Bessel potential space, and H−s(R2) is the dual space to Hs(R2).
We define Hs(Ω) = {u ∈ D′(Ω) : u = U |Ω for some U ∈ Hs(R2)}, and H1

0 (Ω) is
the space of functions in H1(Ω) with zero traces on ∂Ω. By Hs(∂Ω) we denote the
Bessel potential spaces on the boundary ∂Ω, cf., e.g., [18].

For the scalar elliptic differential operator A given by

A =
2∑
i=1

∂

∂xi

[
a(x)

∂

∂xi

]
(2.1)

we consider the Helmholtz equation

Au(x) + k2(x)u(x) = f(x), x ∈ Ω

where k(x) is a real function of x, a(x) is a known variable coefficient, u is an
unknown function and f is a given function in Ω. We assume that a, k ∈ C∞(Ω)
and 0 < a0 < a(x) < a1 <∞ for some constants a0 and a1, for all x ∈ Ω.
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Let us denote Ak := A + k2. Following the definition given, e.g., in [14, 10, 21],
for s ∈ R the subspace Hs,0(Ω;Ak) of Hs(Ω) is defined as

Hs,0(Ω;Ak) := {g ∈ Hs(Ω) : Akg ∈ L2(Ω)}, (2.2)

with the norm ‖g‖2
Hs,0(Ω;Ak) := ‖g‖2

Hs(Ω)+‖Akg‖2
L2(Ω). SinceAku−Au = k2u ∈ L2(Ω)

for u ∈ H1(Ω), we get H1,0(Ω;Ak) = H1,0(Ω;A). Moreover, if s2 ≤ s1, then we have
the embedding Hs1,0(Ω;Ak) ⊂ Hs2,0(Ω;Ak).

For u ∈ Hs(Ω), s > 3/2, the corresponding classical co-normal derivative operator
on ∂Ω in the sense of traces, denoted by T c+ is given by

T c+u(x) =
2∑
i=1

a(x)ni(x)γ+∂u(x)

∂xi
, (2.3)

where n(x) is the outward (to Ω) unit normal vector at the point x ∈ ∂Ω, and γ+ is
the trace operator.

For u ∈ H2(Ω) and v ∈ H1(Ω), from the Gauss-Ostrogradsky theorem we get∫
Ω

v(x)Au(x)dx = −
2∑
i=1

∫
Ω

a(x)
∂u(x)

∂xi

∂v(x)

∂xi
dx+

∫
∂Ω

T c+u(x)γ+v(x)dSx.

From this we obtain the first Green identity:

Ek(u, v) = −
∫

Ω

v(x)Aku(x)dx+

∫
∂Ω

T c+u(x)γ+v(x)dSx, (2.4)

where

Ek(u, v) :=

∫
Ω

a(x)∇u(x) · ∇v(x)dx−
∫

Ω

k2(x)u(x)v(x)dx

is the symmetric bilinear form.
Even though the classical co-normal derivative is, generally, not defined for u ∈

Hs(Ω), s < 3/2, (some examples are provided in [23, Appendix A]) there exists the
following continuous extension of this definition of the classical conormal derivative
hinted by the first Green identity (2.4), for u ∈ Hs,0(Ω;Ak), 1/2 < s < 3/2 (see,
e.g., [10], [18, Lemma 4.3],[21, 22]).

Definition 2.1. For u ∈ Hs,0(Ω;Ak), 1/2 < s < 3/2, the (canonical) co-normal

derivative T+u ∈ Hs− 3
2 (∂Ω) is defined in the following weak form:

〈T+u,w〉
∂Ω

:= 〈Aku, γ−1w〉
Ω

+ Ek(u, γ−1w)

= 〈Au, γ−1w〉
Ω

+ E0(u, γ−1w), ∀w ∈ H
3
2
−s(∂Ω). (2.5)

In (2.5) and further on, γ−1 : H
3
2
−s(∂Ω) → H2−s(Ω) is a bounded right inverse

to the trace operator γ : H2−s(Ω) → H
3
2
−s(∂Ω), the notation 〈·, ·〉

∂Ω
denotes the

duality brackets between the spaces Hs− 3
2 (∂Ω) and H

3
2
−s(∂Ω), while 〈·, ·〉Ω denotes

the duality brackets between the spaces Hs−1(Ω) and H1−s(Ω), extending the usual
L2-inner products.

The operator T+ : Hs,0(Ω;Ak) → Hs−3/2(∂Ω) is continuous for s > 1/2. More-
over, as we observe from [21, Corollary 3.14],

T+u = T c+u for u ∈ Hs(Ω), s > 3/2. (2.6)
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By [10, Lemma 3.4], the first Green identity (2.4) in the form

〈T+u, γ+v〉
∂Ω

= Ek(u, v) + 〈Aku, v〉Ω . (2.7)

holds for u ∈ H1,0(Ω;Ak) and v ∈ H1(Ω).
Interchanging the roles of u and v in the first Green identity (2.7) for u ∈ H1(Ω)

and v ∈ H1,0(Ω;Ak), we obtain the first Green identity for v,

〈T+v, γ+u〉
∂Ω

= Ek(v, u) + 〈Akv, u〉Ω . (2.8)

Then subtracting (2.8) from (2.7), we obtain the second Green identity for u, v ∈
H1,0(Ω;Ak),

〈Aku, v〉Ω − 〈Akv, u〉Ω = 〈T+u, γ+v〉
∂Ω
− 〈T+v, γ+u〉

∂Ω
. (2.9)

3. Parametrix-based potential operators

Definition 3.1. A function P (x, y) is a parametrix for the operator Ak if

(Ak)xP (x, y) = δ(x− y) +Rk(x, y),

where δ is the Dirac-delta distribution, while Rk(x, y) is a remainder possessing at
most a weak singularity at x = y.

Based on [19], the function

P (x, y) =
1

a(y)
P∆(x, y) =

1

2πa(y)
ln
( |x− y|

r0

)
, x, y ∈ R2,

where r0 > 0 is a constant parameter, is a parametrix for the operator A. Note
that

P∆(x, y) =
1

2π
ln
( |x− y|

r0

)
, r0 > 0, x, y ∈ R2 (3.1)

is a fundamental solution of the Laplace operator, ∆, cf., e.g., [18, Theorem 8.1]. We
can also take P (x, y) as a parametrix for the operator Ak. Then the corresponding
remainder function becomes

Rk(x, y) = k2(x)P (x, y) +R(x, y), x, y ∈ R2, (3.2)

where

R(x, y) =
2∑
i=1

xi − yi
2πa(y)|x− y|2

∂a(x)

∂xi
, x, y ∈ R2,

is the remainder function for the operator A and is weakly singular due to the
smoothness of the function a(x). Hence Rk(x, y) is also weakly singular and thus
P (x, y) is, indeed, a parametrix for the operator Ak.

3.1. Surface potentials. The single and the double layer surface potential opera-
tors corresponding to the parametrix P (x, y), are defined for y /∈ ∂Ω as

V g(y) := −
∫
∂Ω

P (x, y)g(x)dSx, Wg(y) := −
∫
∂Ω

[
T+
x P (x, y)

]
g(x)dSx

where the integrals are understood as the appropriate dual products if the scalar
density function g is not integrable.

The corresponding boundary integral (pseudodifferential) operators of direct sur-
face values of the single layer potential V and of the double layer potential W , and



5

the co-normal derivatives of the single layer potential W ′, and of the double layer
potential L+, for y ∈ ∂Ω, are

Vg(y) := −
∫
∂Ω

P (x, y)g(x)dSx, Wg(y) := −
∫
∂Ω

[
T+
x P (x, y)

]
g(x)dSx,

W ′g(y) := −
∫
∂Ω

[
T+
y P (x, y)

]
g(x)dSx, L+g(y) := T+Wg(y). (3.3)

Let V∆,W∆,V∆,W∆ and L+
∆ denote the potentials and the boundary operators

corresponding to the Laplace operator ∆. That is, the subscript ∆ means that
the corresponding surface potentials are constructed by means of the fundamental
solution (3.1) of the Laplace operator ∆. Then the following relations hold in 2D
(cf. [13]).

V g =
1

a
V∆g, Wg =

1

a
W∆(ag) (3.4)

Vg =
1

a
V∆g, Wg =

1

a
W∆(ag), (3.5)

W ′g =W ′∆g +
[
a
∂

∂n

(1

a

)]
V∆g, (3.6)

L+g = L+
∆(ag) +

[
a
∂

∂n

(1

a

)]
γ+W∆(ag). (3.7)

The following two theorems are proved in [13, Theorem 1 and Theorem 2].

Theorem 3.2. Let u ∈ H− 1
2 (∂Ω) and v ∈ H 1

2 (∂Ω). Then the following relations
hold for y ∈ ∂Ω,

γ+V u(y) = Vu(y), (3.8)

γ+Wv(y) = −1

2
v(y) +Wv(y), (3.9)

T+V u(y) =
1

2
u(y) +W ′u(y). (3.10)

Theorem 3.3. For s ∈ R, the following operators are continuous,

V : Hs(∂Ω)→ Hs+ 3
2 (Ω),

W : Hs(∂Ω)→ Hs+ 1
2 (Ω),

V ,W ,W ′ : Hs(∂Ω)→ Hs+1(∂Ω).

These theorems imply the following assertion.

Corollary 3.4. The following operators are continuous,

V : Hs(∂Ω)→ Hs+ 3
2
,0(Ω;Ak), s ≥ −1

2
,

W : Hs(∂Ω)→ Hs+ 1
2
,0(Ω;Ak), s ≥ 1

2
.

Proof. For g ∈ Hs(∂Ω), from Theorem 3.3 we get V g ∈ Hs+ 3
2 (Ω). Then

A(V g) = ∆(aV g)−
2∑
i=1

∂i(V g∂ia)
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= ∆(V∆g)−
2∑
i=1

∂i(V g∂ia) = −
2∑
i=1

∂i(V g∂ia)

belongs to L2(Ω) if s ≥ −1
2
. A similar proof holds for the operator W as well. �

The compactness of the following surface potential operators in Corollary 3.5
follows directly from Theorem 3.3 and Rellich compact embedding theorem [18,
Theorem 3.27].

Corollary 3.5. For s ∈ R, the following operators are compact,

V ,W ,W ′ : Hs(∂Ω)→ Hs(∂Ω).

For s ∈ R, Γ1 ⊂ ∂Ω, let us define the following subspaces of the space Hs(∂Ω),
(see, e.g., [27, pp 147]);

H̃s(Γ1) := {ψ ∈ Hs(∂Ω) : suppψ ⊂ Γ1},
Hs
∗∗(∂Ω) := {ψ ∈ Hs(∂Ω) : 〈ψ, 1〉

∂Ω
= 0},

H̃s
∗∗(Γ1) := {ψ ∈ H̃s(Γ1) : 〈ψ, 1〉

∂Ω
= 0}.

Corollary 3.5 implies the following assertion.

Theorem 3.6. Let Γ1 and Γ2 be nonempty smooth pieces of a curve ∂Ω. Then the
operators

r
Γ2
V , r

Γ2
W , r

Γ2
W ′ : H̃s(Γ1) −→ Hs(Γ2). (3.11)

are compact for s ∈ R.

In (3.11) and further on, r
Γ1

, r
Γ2

, etc. denote the corresponding restriction oper-
ators.

Invertibility of single layer potential operator on ∂Ω. It is well known that
the kernel of the operator

V∆ : H−
1
2 (∂Ω)→ H

1
2 (∂Ω), (3.12)

with the parameter r0 = 1 in (3.1), is non-zero for some domains in 2D, see, e.g., [27,
Theorem 6.22 proof]. Then the first relation in (3.5) and scaling imply a non-zero
kernel also for V with r0 > 0, for some domains Ω.

The following result is proved in [13, Theorem 4].

Theorem 3.7. Let ψ ∈ H−1/2
∗∗ (∂Ω). If Vψ = 0 on ∂Ω, then ψ = 0.

On the other hand, choosing for a given Ω an appropriate parameter r0, one can

get the zero kernel for V not only on the subspace H
−1/2
∗∗ (∂Ω) but also on the entire

space H−1/2(∂Ω) and then prove the following invertibility assertion.

Theorem 3.8. Let Ω ⊂ R2 with r0 > diam(Ω). Then the operator

V : H−
1
2 (∂Ω)→ H

1
2 (∂Ω) (3.13)

is invertible.
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Proof. For r0 = 1, the assertion is available in [13, Theorem 5]. For arbitrary
r0 > diam(Ω), the invertibility of operator (3.12) can be obtained by scaling the
result for r0 = 1, e.g., from Theorem 6.23 and reasoning following it in [27]. Then
the first relation in (3.5) implies the invertibility of operator (3.13) as well. (Cf. also
[2, Theorem 5.2] and [3, Theorem 6].) �

Similarly to [5, Corollary 2.7], we obtain the following assertion.

Corollary 3.9. Let Γ1 be non-empty relatively open connected part of a curve ∂Ω.
Then the operator

r
Γ1
V : H̃−

1
2 (Γ1)→ H

1
2 (Γ1)

is bounded and Fredholm of index zero.

Theorem 3.10. Let Γ1 be a non-empty relatively open connected part of the bound-

ary curve ∂Ω with r0 > diam(Γ1). Then the operator r
Γ1
V : H̃−

1
2 (Γ1) → H

1
2 (Γ1)

has a bounded inverse.

Proof. Taking into account the condition r0 > diam(Γ1) we can follow the proof of
[5, Corollary 2.9]. �

Due to (3.9) and the second relation in (3.4), relation (3.7) can also be written as

L̂g =
[
L+ +

∂a

∂n

(
− 1

2
I +W

)]
g, on ∂Ω, (3.14)

where L̂g:=L+
∆(ag).

The following assertion is available, e.g., in [5, Theorem 2.10] (cf. [6, Theorem
3.6] in the 3D case).

Theorem 3.11. Let Γ1 be nonempty open smooth part of ∂Ω.
(i) Then the operator

r
Γ1
L̂ : H̃

1
2 (Γ1)→ H−

1
2 (Γ1)

is continuously invertible.
(ii) Moreover, the operator

r
Γ1

(L+ − L̂) : H̃
1
2 (Γ1)→ H

1
2 (Γ1)

is bounded and the operator

r
Γ1

(L+ − L̂) : H̃
1
2 (Γ1)→ H−

1
2 (Γ1)

is compact.

3.2. Volume potentials. Similar to [19, 6, 4], we define the parametrix-based log-
arithmic and remainder volume potential operators, respectively, as

Pg(y) :=

∫
Ω

P (x, y)g(x)dx, Rkg(y) :=

∫
Ω

Rk(x, y)g(x)dx, y ∈ R2.

Remark 3.12. As for the layer potentials, let P∆ denote the logarithmic potential
for the operator ∆, that is,

P∆g(y) :=

∫
Ω

P∆(x, y)g(x)dx, x, y ∈ R2,
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where P∆ is the fundamental solution (3.1). Then

Pg =
1

a
P∆g, Rkg = P(k2g) +Rg, (3.15)

where R is the parametrix-based remainder volume potential operator for the re-
mainder function R(x, y) and, see [19, 13],

Rg = −1

a

2∑
i=1

∂i[P∆ (g∂ia)],

where ∂i = ∂/∂xi.

Theorem 3.13. Let Ω be a bounded open region in R2 with closed, infinitely smooth
boundary ∂Ω. The following operators are continuous.

P : Hs(Ω) −→ Hs+2(Ω), s > −1

2
; (3.16)

R : Hs(Ω) −→ Hs+1(Ω), s > −1

2
; (3.17)

Rk : Hs(Ω) −→ Hs+1(Ω), s > −1

2
; (3.18)

γ+Rk : Hs(Ω) −→ Hs+ 1
2 (∂Ω), s > −1

2
; (3.19)

T+Rk : Hs(Ω) −→ Hs− 1
2 (∂Ω), s >

1

2
. (3.20)

Proof. For (3.16) and (3.17), we refer to [13, Theorem 3]. From the second relation
in (3.15), together with (3.16) and (3.17) we obtain the continuity of (3.18). The
continuity of the operators (3.19) and (3.20) is the direct consequence of the trace
theorem, Definition 2.1 of the co-normal derivative and relation (2.6). �

Corollary 3.14. The following operators are continuous.

P : Hs(Ω) −→ Hs+2,0(Ω;Ak), s ≥ 0; (3.21)

R : Hs(Ω) −→ Hs+1,0(Ω;Ak), s ≥ 1; (3.22)

Rk : Hs(Ω) −→ Hs+1,0(Ω;Ak), s ≥ 1. (3.23)

Proof. Using the continuity of operators (3.16)–(3.18) and the space definition (2.2),
we obtain the continuity of operators (3.21)–(3.23). �

Corollary 3.15. The following operators are compact.

Rk : Hs(Ω) −→ Hs(Ω), s > −1

2
; (3.24)

γ+Rk : Hs(Ω) −→ Hs− 1
2 (∂Ω), s > −1

2
; (3.25)

T+Rk : Hs(Ω) −→ Hs− 3
2 (∂Ω) s >

1

2
. (3.26)

Proof. The compactness of operators (3.24)–(3.26) follows from (3.18)–(3.20) and
the Rellich compact embedding theorem. �

Corollary 3.16. The operator

Rk −R : Hs(Ω) −→ Hs,0(Ω;Ak), s > 0, (3.27)

is compact.
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Proof. From the second equation in (3.15) we see that Rkg −Rg = P(k2g). Then
by (3.16) for s > −1/2, the operator Rk −R : Hs(Ω)→ Hs+2(Ω) is continuous and
the operator Rk−R : Hs(Ω)→ Hs(Ω) is compact. Hence the operator ∆(Rk−R) :
Hs(Ω) → Hs(Ω) is also continuous for s > −1/2 and the operator ∆(Rk − R) :
Hs(Ω)→ L2(Ω) is compact for s > 0.

Further, Ak(Rk − R) = a∆(Rk − R) +
∑2

j=1(∂ja)∂j(Rk − R) + k2(Rk − R).

The operator ∂j(Rk − R) : Hs(Ω) → Hs+1(Ω) is continuous and hence the oper-
ator ∂j(Rk − R) : Hs(Ω) → H0(Ω) is compact for s > −1/2. Thus the operator
Ak(Rk−R) : Hs(Ω)→ L2(Ω) is compact for the operator Ak with infinitely smooth
coefficients, for s > 0 . Hence the compactness of operator (3.27) follows from the
space definition (2.2). �

Corollary 3.17. Let Γ1 and Γ2 be non-empty, non-intersecting parts of ∂Ω such
that ∂Ω = Γ1 ∪ Γ2. Then the operators

r
Γ1
γ+R, r

Γ1
γ+Rk : Hs(Ω) −→ Hs− 1

2 (Γ1),

r
Γ1
T+R, r

Γ1
T+Rk : Hs(Ω) −→ Hs− 3

2 (Γ1),

are compact for s > 1
2
.

Proof. Theorem (3.13) implies that the operators γ+Rk and T+Rk have the following
mapping properties for s > 1

2
:

r
Γ1
γ+Rk : Hs(Ω) −→ Hs+ 1

2 (Γ1),

r
Γ1
T+Rk : Hs(Ω) −→ Hs− 1

2 (Γ1).

Then the proof follows from the compactness of the embeddingsHs+ 1
2 (Γ1) ⊂ Hs− 1

2 (Γ1)

and Hs− 1
2 (Γ1) ⊂ Hs− 3

2 (Γ1). The proof holds true also for k = 0. �

4. The Third Green Identity

As, e.g., in [5, 4, 6, 13], for u ∈ H1,0(Ω;Ak), we substitute P (x, y) for v(x) in
Green’s second identity (2.9) for Ω\Bε(y), where Bε(y) is a disc of radius ε centered
at y and take the limit as ε → 0 to arrive at the parametrix-based third Green
identity

u+Rku− V T+u+Wγ+u = PAku in Ω. (4.1)

Taking the trace of (4.1) and using relations (3.8) and (3.9) we obtain

1

2
γ+u+ γ+Rku− VT+u+Wγ+u = γ+PAku on ∂Ω. (4.2)

From Corollaries 3.4 and 3.14, we see that each term of (4.1) belongs toH1,0(Ω;Ak).
Now, taking the co-normal derivative of (4.1) and using relation (3.10) we get

1

2
T+u+ T+Rku−W ′T+u+ T+Wγ+u = T+PAku on ∂Ω. (4.3)

If u ∈ H1(Ω) is a solution of equation Aku = f in Ω, where f ∈ L2(Ω), then (4.1)
becomes

u+Rku− V T+u+Wγ+u = Pf in Ω. (4.4)
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For some functions f,Ψ and Φ, let us consider a more general indirect integral
relation associated with (4.4),

u+Rku− VΨ +WΦ = Pf in Ω. (4.5)

Lemma 4.1. Let u ∈ H1(Ω), f ∈ L2(Ω),Ψ ∈ H− 1
2 (∂Ω),Φ ∈ H 1

2 (∂Ω) satisfy (4.5).
Then u belongs to H1,0(Ω;Ak) and is a solution of PDE Aku = f in Ω, and

V (Ψ− T+u)(y)−W (Φ− γ+u)(y) = 0, y ∈ Ω. (4.6)

Proof. As in [6, Lemma 4.1] in the 3D case for k = 0, from Corollaries 3.4 and 3.14
we conclude that all terms in (4.5) except u belong to H1,0(Ω;Ak). Then equation
(4.5) implies that u belongs to H1,0(Ω;Ak) as well. Now, let us prove the remaining
results.

Subtracting (4.5) from (4.1), we obtain

VΨ∗ −WΦ∗ = P [Aku− f ] in Ω, (4.7)

where Ψ∗ := T+u − Ψ and Φ∗ := γ+u − Φ. Multiplying equality (4.7) by a(y) and
using relation (3.4) and (3.15) we get

V∆Ψ∗ −W∆(aΦ∗) = P∆[Aku− f ], in Ω. (4.8)

The application of the Laplace operator ∆ to (4.8) gives

Aku− f = 0 in Ω. (4.9)

This shows that u solves differential equation Aku = f in Ω.
Substituting (4.9) into (4.7) leads to (4.6). �

Lemma 4.2.

(i) Let either Ψ∗ ∈ H− 1
2 (∂Ω) and r0 > diam(Ω). If VΨ∗ = 0 in Ω, then Ψ∗ = 0

on ∂Ω.
(ii) Let Φ∗ ∈ H 1

2 (∂Ω) and r0 > 0. If WΦ∗ = 0 in Ω, then Φ∗ = 0 on ∂Ω.

Proof. The assertion was proved in [13, Lemma 2] for r0 = 1. Taking into account
Theorem 3.8 , we follow the proof of [13, Lemma 2] almost word-for-word to obtain
the assertion for arbitrary r0 > 0. �

Lemma 4.3. Let ∂Ω = Γ1 ∪ Γ2, where Γ1 and Γ2 are non-empty, non-intersecting

relatively open parts of the boundary curve ∂Ω. Let Φ∗ ∈ H̃ 1
2 (Γ2) and Ψ∗ ∈ H̃− 1

2 (Γ1)
with r0 > diam(Γ1). If

VΨ∗(y)−WΦ∗(y) = 0, y ∈ Ω, (4.10)

then Ψ∗ = 0 and Φ∗ = 0 on ∂Ω.

Proof. Keeping in mind [18, Theorem 8.16] we follow the proof of [6, Lemma 4.2 (iii)]
(See also [5, Lemma 2.12], [2, Lemma 5.8], [3, Lemma 3]). �

Remark 4.4. The results of Lemma 4.2 and Lemma 4.3 with no restriction on

the parameter r0 can be similarly obtained if Ψ∗ ∈ H
− 1

2
∗∗ (∂Ω) and Ψ∗ ∈ H̃

− 1
2

∗∗ (Γ1),
respectively.



11

5. Boundary-Domain Integral Equations of the Dirichlet BVP

Consider the Dirichlet BVP
Aku = f in Ω,

γ+u = ϕ0 on ∂Ω,
(5.1)

for unknown function u ∈ H1(Ω), where f ∈ L2(Ω) and ϕ0 ∈ H
1
2 (∂Ω) are given

functions. The first equation is understood in the distribution sense.
Let us derive and analyze BDIE systems for the Dirichlet BVP (5.1).
To reduce the variable-coefficient Dirichlet BVP (5.1) to a segregated BDIE sys-

tems, we denote the unknown co-normal derivative as ψ := T+u and further consider
ψ as formally independent of u.

BDIE System (D1). We substitute Aku and γ+u from the Dirichlet BVP (5.1)
into (4.1) and into its trace (4.2) to reduce the Dirichlet BVP (5.1) to the BDIE
system (D1) with the unknowns u and ψ:

u+Rku− V ψ = F0 in Ω,

γ+Rku− Vψ = γ+F0 − ϕ0 on ∂Ω,
(D1)

where

F0 = Pf −Wϕ0 in Ω. (5.2)

The matrix form of system (D1) is A1
kU = F1, where U = (u, ψ)t ∈ H1,0(Ω;Ak) ×

H−
1
2 (∂Ω),

A1
k =

[
I +Rk − V
γ+Rk − V

]
, F1 =

[
F0

γ+F0 − ϕ0

]
. (5.3)

From the mapping properties of P and W provided in Section 3, we get F0 ∈
H1,0(Ω;Ak). Moreover, the trace theorem implies that γ+F0 ∈ H

1
2 (∂Ω). There-

fore, F1 ∈ H1,0(Ω;Ak)×H
1
2 (∂Ω). Due to the mapping properties of the operators

involved in (5.3), see Section 3, the following operators are bounded:

A1
k : H1(Ω)×H−

1
2 (∂Ω) −→ H1(Ω)×H

1
2 (∂Ω), (5.4)

A1
k : H1,0(Ω;Ak)×H−

1
2 (∂Ω) −→ H1,0(Ω;Ak)×H

1
2 (∂Ω). (5.5)

Remark 5.1. F1 = 0 if and only if (f, ϕ0) = 0.

Proof. If F1 = 0, then F0 = 0 and γ+F0 + ϕ0 = 0. Consequently, ϕ0 = 0 on ∂Ω.
From this and F0 = 0 we obtain that Pf = 0 in Ω, and hence f = 0 in Ω. The
reverse implication is trivial. �

BDIE System (D2). This system is obtained by substituting Aku and γ+u from
the Dirichlet BVP (5.1) into (4.1) and into its co-normal derivative (4.3), with the
unknowns u and ψ:

u+Rku− V ψ = F0 in Ω,

1

2
ψ + T+Rku−W ′ψ = T+F0 on ∂Ω,

(D2)

where F0 is the relation (5.2). The system (D2) can be written in matrix form as

A2
kU = F2,

where
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A2
k :=

[
I +Rk − V
T+Rk

1
2
I −W ′

]
, F2 =

[
F0

T+F0

]
,

and F0 is given by (5.2). The following operators are bounded:

A2
k : H1(Ω)×H−

1
2 (∂Ω) −→ H1(Ω)×H−

1
2 (∂Ω), (5.6)

A2
k : H1,0(Ω;Ak)×H−

1
2 (∂Ω) −→ H1,0(Ω;Ak)×H−

1
2 (∂Ω). (5.7)

Remark 5.2. F2 = 0 if and only if (f, ϕ0) = 0.

Proof. If F2 = 0, then F0 = 0. From which we get

0 = ∆(aF0) = ∆(P∆f) + ∆W∆(ϕ0) = f in Ω.

Then the condition F0 = 0 gives W∆(ϕ0) = 0 and Lemma 4.2(ii) implies that ϕ0 = 0
on ∂Ω. The reverse implication is trivial. �

6. Equivalence, Fredholm Properties and Invertibility for BDIEs of
the Dirichlet BVP

In this section we first prove the equivalence of the Dirichlet BVP (5.1) to the
BDIE systems (D1) and (D2), and then we show the necessary conditions for the
invertibility of the two corresponding operators to the BDIE systems.

Theorem 6.1. Let ϕ0 ∈ H
1
2 (∂Ω) and f ∈ L2(Ω).

(i) If some u ∈ H1(Ω) solves the BVP (5.1), then the pair (u, ψ)t, where

ψ = T+u ∈ H−
1
2 (∂Ω), (6.1)

solves BDIE systems (D1) and (D2).

(ii) Let r0 > diam(Ω). If a pair (u, ψ)t ∈ H1(Ω)×H− 1
2 (∂Ω) solves BDIE system

(D1), then u solves BVP (5.1) and ψ satisfies (6.1).

(iii) Let r0 > 0. If a pair (u, ψ)t ∈ H1(Ω)×H− 1
2 (∂Ω) solves BDIE system (D2),

then u solves BVP (5.1), and ψ satisfies (6.1).

Proof. To prove (i), we let u ∈ H1(Ω) be a solution of the BVP (5.1). Since Aku =
f ∈ L2(Ω), we get u ∈ H1,0(Ω;Ak). Setting ψ = T+u and recalling how BDIE
system (D1) and (D2) are constructed, we obtain that the couple (u, ψ)t solves the
systems.

To prove (ii) and (iii), let us assume first that a pair (u, ψ)t ∈ H1(Ω)×H− 1
2 (∂Ω)

solves system (D1) or (D2). Due to the first equation in the BDIE systems, the
hypotheses of Lemma 4.1 are satisfied implying that u belongs to H1,0(Ω;Ak) and
solves the PDE in the BVP (5.1) in Ω. Moreover, the equation

W (ϕ0 − γ+u)(y)− V (ψ − T+u)(y) = 0, y ∈ Ω, (6.2)

holds.
To prove the remaining parts of (ii), we let (u, ψ)t ∈ H1(Ω) × H−

1
2 (∂Ω) solve

system (D1). Taking the trace of the first equation in (D1) and subtracting the
second equation from it, we get the Dirichlet boundary condition

γ+u = ϕ0 on ∂Ω,

and substituting this in equation (6.2) we obtain

V (ψ − T+u)(y) = 0, y ∈ Ω.
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Since r0 > diam(Ω), from Lemma 4.2(i) we get ψ = T+u.

To complete (iii), we let (u, ψ)t ∈ H1(Ω) × H−
1
2 (∂Ω) solve system (D2). It is

already shown that u ∈ H1,0(Ω;Ak). Moreover, all the remaining terms in the
first equation of (D2) belong to H1,0(Ω;Ak) due to the mapping properties of the
operators involved, see Section 3. Then taking the co-normal derivative of the first
equation in (D2) and subtracting the second one from it, we get

ψ = T+u on ∂Ω.

Then inserting this in equation (6.2) gives

W (ϕ0 − γ+u)(y) = 0, y ∈ Ω,

and Lemma 4.2(ii) implies ϕ0 = γ+u on ∂Ω. �

Theorem 6.1 implies the following two corollaries.

Corollary 6.2. Let ϕ0 ∈ H
1
2 (∂Ω) and f ∈ L2(Ω).

(i) Let r0 > diam(Ω). If a pair (u, ψ)t ∈ H1(Ω)×H− 1
2 (∂Ω) solves BDIE system

(D1), it solves BDIE system (D2).

(ii) Let r0 > 0. If a pair (u, ψ)t ∈ H1(Ω)×H− 1
2 (∂Ω) solves BDIE system (D2),

it solves BDIE system (D1).

Corollary 6.3.

(i) Let r0 > diam(Ω). The homogeneous counterpart of BDIE system (D1) has

a non-trivial solution in H1×H− 1
2 (∂Ω) if and only if the homogeneous coun-

terpart of the Dirichlet problem (5.1) has a non-trivial solution in H1(Ω).
(ii) Let r0 > 0. The homogeneous counterpart of BDIE system (D2) has a non-

trivial solution in H1(Ω) × H− 1
2 (∂Ω) if and only if the homogeneous coun-

terpart of the Dirichlet problem (5.1) has a non-trivial solution in H1(Ω).

Let us now analyse the Fredholm properties of operators (5.4), (5.5), (5.6) and
(5.7). As a bi-product we also prove the invertibility of the corresponding operators
for k = 0.

Theorem 6.4.

(i) If r0 > diam(Ω), then operator (5.4) is Fredholm with zero index.
(ii) If r0 > 0, then operator (5.6) is Fredholm with zero index.

Proof. (i) Let us consider the auxiliary operator

A1
∗ :=

[
I − V
0 − V

]
.

Then the operator A1
∗ : H1(Ω) ×H− 1

2 (∂Ω) −→ H1(Ω) ×H 1
2 (∂Ω) is bounded. It is

invertible due to the invertibility of its diagonal operators

I : H1(Ω)→ H1(Ω) and V : H−
1
2 (∂Ω)→ H

1
2 (∂Ω),

see Theorem 3.8. Due to the mapping properties of the operators involved, the
operator A1

k −A1
∗ : H1(Ω)×H− 1

2 (∂Ω)→ H1(Ω)×H 1
2 (∂Ω) where

A1
k −A1

∗ =

[
Rk 0
γ+Rk 0

]
,
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is compact. Thus, operator (5.4) is Fredholm with index zero.

(ii) The operator A2
∗ : H1(Ω)×H− 1

2 (∂Ω) −→ H1(Ω)×H− 1
2 (∂Ω), where

A2
∗ =

[
I − V
0 1

2
I

]
is bounded. It is also invertible due to the invertibility of its diagonal operators

I : H1(Ω) −→ H1(Ω) and I : H−
1
2 (∂Ω) −→ H−

1
2 (∂Ω).

By Corollaries 3.5 and 3.15, the operator

A2
k −A2

∗ : H1(Ω)×H−
1
2 (∂Ω) −→ H1(Ω)×H−

1
2 (∂Ω),

where

A2
k −A2

∗ =

[
Rk 0

T+Rk −W ′
]
,

is compact. This implies that operator (5.6) is a Fredholm operator of index zero. �

Let us consider the particular cases of operators (5.4), (5.5), (5.6) and (5.7), for
k = 0, that is,

A1
0 : H1(Ω)×H−

1
2 (∂Ω) −→ H1(Ω)×H

1
2 (∂Ω), (6.3)

A1
0 : H1,0(Ω;A)×H−

1
2 (∂Ω) −→ H1,0(Ω;A)×H

1
2 (∂Ω), (6.4)

A2
0 : H1(Ω)×H−

1
2 (∂Ω)→ H1(Ω)×H−

1
2 (∂Ω), (6.5)

A2
0 : H1,0(Ω;A)×H−

1
2 (∂Ω)→ H1,0(Ω;A)×H−

1
2 (∂Ω), (6.6)

where

A1
0 =

[
I +R − V
γ+R − V

]
, A2

0 =

[
I +R −V
T+R 1

2
I −W ′

]
.

Theorem 6.5.

(i) If r0 > diam(Ω), then operators (6.3) and (6.4) are invertible.
(ii) If r0 > 0, then operators (6.5) and (6.6) are invertible.

Proof. The theorem for r0 = 1 was proved in [13, Theorems 7 and 8]. Here we
update the proof for arbitrary r0 > 0.

It is well known that the homogeneous Dirichlet problem (5.1) with k = 0, that is,
with Ak = A, where the operator A is given by (2.1) and 0 < a0 < a(x) < a1 <∞,
has only the trivial solution in H1,0(Ω;A) and H1(Ω). This can be obtained, e.g.,
from the first Green identity (2.7). Then the equivalence Theorem 6.1 implies that
operators (6.3), (6.4), (6.5) and (6.6) are injective. By Theorem 6.4, operators (6.3)
and (6.5) are Fredholm operators with zero index. Then the injectivity of operators
(6.3) and (6.5) implies their invertibility, see, e.g., [18, Theorem 2.27].

To prove invertibility of operator (6.4), we remark that for any F1 ∈ H1,0(Ω;A)×
H

1
2 (∂Ω), a solution of the equation A1

0U = F1 can be written as U = (A1
0)−1F1,

where (A1
0)−1 : H1(Ω)×H 1

2 (∂Ω)→ H1(Ω)×H− 1
2 (∂Ω) is the continuous inverse to

operator (6.3). But due to Lemma 4.1 the first equation of system (D1) with k = 0

implies that U = (A1
0)−1F1 ∈ H1,0(Ω;A) × H−

1
2 (∂Ω) and moreover, the operator

(A1
0)−1 : H1,0(Ω;A)×H 1

2 (∂Ω)→ H1,0(Ω;A)×H− 1
2 (∂Ω) is continuous, which implies

invertibility of operator (6.4).
The invertibility of operator (6.6) is proved in a similar fashion. �
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Now, we are in the position to prove an analogue of Theorem 6.4 for operators
(5.5) and (5.7).

Theorem 6.6.

(i) If r0 > diam(Ω), then operator (5.5) is Fredholm with zero index.
(ii) If r0 > 0, then operator (5.7) is Fredholm with zero index.

Proof. By Theorem 6.5 we see that operators (6.4) and (6.6) are invertible. Due to
Corollary 3.16, the operators

A1
k −A1

0 : H1,0(Ω;Ak)×H−
1
2 (∂Ω)→ H1,0(Ω;Ak)×H

1
2 (∂Ω),

A2
k −A2

0 : H1,0(Ω;Ak)×H−
1
2 (∂Ω)→ H1,0(Ω;Ak)×H−

1
2 (∂Ω),

where

A1
k −A1

0 =

[
Rk −R 0

γ+(Rk −R) 0

]
, A2

k −A2
0 =

[
Rk −R 0

T+(Rk −R) 0

]
,

are compact, implying that operators (5.5) and (5.7) are Fredholm operators with
index zero. �

Corollary 6.7.

(i) Let r0 > diam(Ω). The homogeneous counterpart of the Dirichlet problem
(5.1) has only the trivial solution in H1(Ω) if and only if operators (5.4) and
(5.5) are invertible.

(ii) Let r0 > 0. The homogeneous counterpart of the Dirichlet problem (5.1) has
only the trivial solution in H1(Ω) if and only if operators (5.6) and (5.7) are
invertible.

Proof. If the homogeneous counterpart of the Dirichlet problem (5.1) has only the
trivial solution in H1(Ω), by Corollary 6.3(i) the operators (5.4) and (5.5) will be
injective. Hence these operators become invertible due to Theorem 6.4.

Conversely, if the operator (5.4) or (5.5) is invertible, the homogeneous counter-

part of BDIE system (D1) can have only the trivial solution in H1(Ω) ×H− 1
2 (∂Ω)

and hence the result follows from Corollary 6.3(i).
For operators (5.6) and (5.7) the proof is similar. �

7. Boundary Domain Integral Equations of the Mixed BVP

Let ∂Ω = ∂ΩD ∪ ∂ΩN , where ∂ΩD and ∂ΩN are non-empty, relatively open, non-
intersecting parts of ∂Ω. We will derive and analyze the system of BDIEs for the
following mixed BVP

Aku = f in Ω,

γ+u = ϕ0 on ∂ΩD,

T+u = ψ0 on ∂ΩN ,

(7.1)

for unknown function u ∈ H1(Ω), where f ∈ L2(Ω), ϕ0 ∈ H
1
2 (∂ΩD) and ψ0 ∈

H−
1
2 (∂ΩN) are given functions.

Similar to the 3D case in [6] and the 2D case with k = 0 in [5], we let Φ0 ∈ H
1
2 (∂Ω)

and Ψ0 ∈ H−
1
2 (∂Ω) be some extensions of the given function ϕ0 from ∂ΩD to ∂Ω

and ψ0 from ∂ΩN to ∂Ω, respectively. Then an arbitrary extension Φ ∈ H
1
2 (∂Ω)
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preserving the function space can be represented as Φ = Φ0 +ϕ with ϕ ∈ H̃ 1
2 (∂ΩN);

and Ψ ∈ H− 1
2 (∂Ω) as Ψ = Ψ0 + ψ with ψ ∈ H̃− 1

2 (∂ΩD).
Considering equation (4.1), and restrictions of either equation (4.2) or (4.3) on the

appropriate parts of ∂Ω, we reduce the BVP (7.1) to four different BDIE systems.
In each case, we substitute f for Aku, Φ = Φ0 + ϕ for the boundary trace γ+u and
Ψ = Ψ0 + ψ for the co-normal derivative T+u, where Φ0 and Ψ0 are considered as

known while the triple (u, ψ, ϕ) ∈ H1,0(Ω;Ak) × H̃−
1
2 (∂ΩD) × H̃ 1

2 (∂ΩN) is to be
found.

BDIE System (M11). This system is obtained by considering the third Green
identity (4.1) in Ω, the restriction of its trace equation (4.2) on ∂ΩD and the restric-
tion of its co-normal derivative equation (4.3) on ∂ΩN , with respect to the unknowns
u, ψ, and ϕ:

u+Rku− V ψ +Wϕ = F0, in Ω,

γ+Rku− Vψ +Wϕ = γ+F0 − ϕ0, on ∂ΩD,

T+Rku−W ′ψ + L+ϕ = T+F0 − ψ0, on ∂ΩN ,

(M11)

where

F0 = Pf + VΨ0 −WΦ0 in Ω. (7.2)

The BDIE system (M11) can be rewritten in matrix form as

M11
k U = F11, (7.3)

where U = (u, ψ, ϕ)t ∈ H1,0(Ω;Ak)× H̃−
1
2 (∂ΩD)× H̃ 1

2 (∂ΩN) and

M11
k =

 I +Rk − V W
r
∂ΩD

γ+Rk − r
∂ΩD
V r

∂ΩD
W

r
∂ΩN

T+Rk − r
∂ΩN
W ′ r

∂ΩN
L+

 , F11 =

 F0

r
∂ΩD

γ+F0 − ϕ0

r
∂ΩN

T+F0 − ψ0

 .
Due to Corollaries 3.4 and 3.14, we get F0 ∈ H1,0(Ω;Ak). Then we have F11 ∈

H1,0(Ω;Ak)×H
1
2 (∂ΩD)×H− 1

2 (∂ΩN) and the operators

M11
k : H1(Ω)× H̃−

1
2 (∂ΩD)× H̃

1
2 (∂ΩN)

−→ H1(Ω)×H
1
2 (∂ΩD)×H−

1
2 (∂ΩN), (7.4)

M11
k : H1,0(Ω;Ak)× H̃−

1
2 (∂ΩD)× H̃

1
2 (∂ΩN)

−→ H1,0(Ω;Ak)×H
1
2 (∂ΩD)×H−

1
2 (∂ΩN) (7.5)

are bounded.
Taking into account Lemma 4.3, we prove the following Remark in the same way

as [6, Remark 5.1].

Remark 7.1. Let r0 > diam(Ω). F11 = 0 if and only if (f,Φ0,Ψ0) = 0.

BDIE System (M12). By taking the third Green identity (4.1) in Ω and its trace
(4.2) on the whole boundary ∂Ω, we arrive at the system (M12):

u+Rku− V ψ +Wϕ = F0 in Ω,

1

2
ϕ+ γ+Rku− Vψ +Wϕ = γ+F0 − Φ0, on ∂Ω,

(M12)
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where F0 is given by the relation (7.2). System (M12) can be rewritten in matrix
form as

M12
k U = F12, (7.6)

where U = (u, ψ, ϕ)t ∈ H1,0(Ω;Ak)× H̃−
1
2 (∂ΩD)× H̃ 1

2 (∂ΩN) and

M12
k =

[
I +Rk − V W
γ+Rk − V 1

2
I +W

]
, F12 =

[
F0

γ+F0 − Φ0

]
.

Note that F12 ∈ H1,0(Ω;Ak) × H
1
2 (∂Ω). Due to the mapping properties of the

operators involved (see Corollaries 3.4 and 3.14, Theorem 3.13 and [13, Theorem
1]), we see that the operators

M12
k : H1(Ω)× H̃−

1
2 (∂ΩD)× H̃

1
2 (∂ΩN) −→ H1(Ω)×H

1
2 (∂Ω), (7.7)

M12
k : H1,0(Ω;Ak)× H̃−

1
2 (∂ΩD)× H̃

1
2 (∂ΩN) −→ H1,0(Ω;Ak)×H

1
2 (∂Ω) (7.8)

are bounded.

Remark 7.2. Let Ψ0 ∈ H−
1
2 (∂Ω) with r0 > diam(Ω). Then F12 = 0 if and only if

(f,Φ0,Ψ0) = 0.
Indeed, the latter obviously implies the former. Conversely, let F12 = (F0, γ

+F0−
Φ0) = 0. From F0 = 0, we get f = 0 and VΨ0 − WΦ0 = 0 in Ω. Again from
γ+F0 − Φ0 = 0, we get Φ0 = 0 on ∂Ω. Hence we obtain VΨ0 = 0 in Ω, and the
result follows from Lemma 4.2 (i).

BDIE System (M21). We obtain this system by using the third Green identity
(4.1) on Ω and its co-normal derivative (4.3) on the whole boundary ∂Ω:

u+Rku− V ψ +Wϕ = F0 in Ω,

1

2
ψ + T+Rku−W ′ψ + L+ϕ = T+F0 −Ψ0 on ∂Ω,

(M21)

where F0 is given by (7.2). We rewrite the system (M21) in matrix form as

M21
k U = F21,

where U = (u, ψ, ϕ)t ∈ H1,0(Ω;Ak)× H̃−
1
2 (∂ΩD)× H̃ 1

2 (∂ΩN) and

M21
k =

[
I +Rk − V W
T+Rk

1
2
I −W ′ L+

]
, F21 =

[
F0

T+F0 −Ψ0

]
.

Here F21 ∈ H1,0(Ω;Ak)×H−
1
2 (∂Ω). Due to the mapping properties of the operators

involved in M21
k , the following operators are bounded.

M21
k : H1(Ω)× H̃−

1
2 (∂ΩD)× H̃

1
2 (∂ΩN) −→ H1(Ω)×H−

1
2 (∂Ω), (7.9)

M21
k : H1,0(Ω;Ak)× H̃−

1
2 (∂ΩD)× H̃

1
2 (∂ΩN) −→ H1,0(Ω;Ak)×H−

1
2 (∂Ω). (7.10)

Remark 7.3. Let r0 > 0. F21 = 0 if and only if (f,Φ0,Ψ0) = 0.

We prove this remark in the same way as Remark 7.2.
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BDIE System (M22). Here we use the third Green identity (4.1) in Ω, the restric-
tion of its trace equation (4.2) on ∂ΩN and the restriction of its conormal derivative
equation (4.3) on ∂ΩD to get the system (M22),

u+Rku− V ψ +Wϕ = F0 in Ω,

1

2
ψ + T+Rku−W ′ψ + L+ϕ = T+F0 −Ψ0 on ∂ΩD,

1

2
ϕ+ γ+Rku− Vψ +Wϕ = γ+F0 − Φ0 on ∂ΩN ,

(M22)

where F0 is given by (7.2). Let us write the system (M22) in matrix form as,

M22
k U = F22,

where U = (u, ψ, ϕ)t ∈ H1,0(Ω;Ak)× H̃−
1
2 (∂ΩD)× H̃ 1

2 (∂ΩN), and

M22
k =

 I +Rk − V W
r
∂ΩD

T+Rk r
∂ΩD

(
1
2
I −W ′

)
r
∂ΩD
L+

r
∂ΩN

γ+Rk − r
∂ΩN
V r

∂ΩN

(
1
2
I +W

)
 ,

F22 =

 F0

r
∂ΩD

(T+F0 −Ψ0)

r
∂ΩN

(γ+F0 − Φ0)

 .
From the mapping properties of the operators involved, F22 ∈ H1,0(Ω;Ak)×H−

1
2 (∂ΩD)×

H
1
2 (∂ΩN) and the following operators are bounded.

M22
k : H1(Ω)× H̃−

1
2 (∂ΩD)× H̃

1
2 (∂ΩN)

−→ H1(Ω)×H−
1
2 (∂ΩD)×H

1
2 (∂ΩN), (7.11)

M22
k : H1,0(Ω;Ak)× H̃−

1
2 (∂ΩD)× H̃

1
2 (∂ΩN)

−→ H1,0(Ω;Ak)×H−
1
2 (∂ΩD)×H

1
2 (∂ΩN). (7.12)

Taking into account Lemma 4.3 , we prove the following remark in the same way
as [6, Remark 5.11].

Remark 7.4. Let r0 > diam(Ω). F22 = 0 if and only if (f,Φ0,Ψ0) = 0.

8. Equivalence, Fredholm Properties and Invertibility for BDIE
operators of the mixed BVP

Let us prove that the mixed BVP (7.1) is equivalent to the BDIE systems (M11),
(M12), (M21) and (M22).

Theorem 8.1. Let Φ0 ∈ H
1
2 (∂Ω) and Ψ0 ∈ H−

1
2 (∂Ω) be some extensions of ϕ0 ∈

H
1
2 (∂ΩD) and ψ0 ∈ H−

1
2 (∂ΩN), respectively, and let f ∈ L2(Ω).

(i) If some u ∈ H1(Ω) solves the mixed BVP (7.1), then the triple (u, ψ, ϕ)t ∈
H1(Ω)× H̃− 1

2 (∂ΩD)× H̃ 1
2 (∂ΩN), where

ψ = T+u−Ψ0, ϕ = γ+u− Φ0 on ∂Ω, (8.1)

solves the BDIE systems (M11), (M12), (M21) and (M22).
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(ii) Let r0 > diam(Ω). If a triple (u, ψ, ϕ)t ∈ H1(Ω) × H̃− 1
2 (∂ΩD) × H̃ 1

2 (∂ΩN)
solves one of the BDIE systems (M11) or (M12) or (M22), then u solves
BVP (7.1), and relations (8.1) hold.

(iii) Let r0 > 0. If a triple (u, ψ, ϕ)t ∈ H1(Ω) × H̃− 1
2 (∂ΩD) × H̃ 1

2 (∂ΩN) solves
the BDIE system (M21), then u solves BVP (7.1), and relations (8.1) hold.

Proof. To prove (i), we let u ∈ H1(Ω) be a solution to BVP (7.1). Then for ψ and

ϕ defined by (8.1) we get ψ ∈ H̃−
1
2 (∂ΩD) and ϕ ∈ H̃

1
2 (∂ΩN). Recalling how the

four BDIE systems were constructed, the result immediately follows from relations
(4.1)–(4.3).

To prove (ii) and (iii), let us first assume that a triple (u, ψ, ϕ)t ∈ H1(Ω) ×
H̃−

1
2 (∂ΩD)× H̃ 1

2 (∂ΩN) solves the BDIE system (M11) or (M12) or (M21) or (M22).
The first equation of each system and Lemma 4.1 with Ψ = ψ+ Ψ0 and Φ = ϕ+ Φ0

imply that u solves the PDE Aku = f on Ω the relation

VΨ∗ −WΦ∗ = 0 in Ω (8.2)

holds for

Ψ∗ = Ψ0 + ψ − T+u and Φ∗ = Φ0 + ϕ− γ+u. (8.3)

Whenever in the remaining proof we take the trace or co-normal derivative of the
first equation of each system, we make use of relations (3.8)–(3.10) and the last
equation in (3.3).

Proof for (M11). Let a triple (u, ψ, ϕ)t ∈ H1(Ω)× H̃− 1
2 (∂ΩD)× H̃ 1

2 (∂ΩN) solve
the BDIE system (M11). Taking the trace of the first equation in (M11) on ∂ΩD

and subtracting the second equation from it, we obtain

γ+u = ϕ0 on ∂ΩD, (8.4)

i.e., u satisfies the Dirichlet condition in (7.1). We now take the co-normal derivative
of the first equation in (M11) on ∂ΩN and subtract the third equation from it to get

T+u = ψ0 on ∂ΩN , (8.5)

i.e., u satisfies the Neumann condition in (7.1). Taking into account that ϕ =
0, Φ0 = ϕ0 on ∂ΩD and ψ = 0, Ψ0 = ψ0 on ∂ΩN , equations (8.4) and (8.5) imply
that the first equation in (8.1) is satisfied on ∂ΩN and the second equation in (8.1) on

∂ΩD. From this and relation (8.3) we have Ψ∗ ∈ H̃− 1
2 (∂ΩD), Φ∗ ∈ H̃ 1

2 (∂ΩN). Since
relation (8.2) holds and r0 > diam(∂ΩD), from Lemma 4.3 we get Ψ∗ = Φ∗ = 0,
which completes the proof of conditions (8.1).

Proof for (M12). Now, let a triple (u, ψ, ϕ)t ∈ H1(Ω)× H̃− 1
2 (∂ΩD)× H̃ 1

2 (∂ΩN)
solve BDIE system (M12). Taking trace of the first equation in (M12) on ∂Ω and
subtracting the second one from it, we obtain

γ+u = Φ0 + ϕ on ∂Ω, (8.6)

which means that the second equation in (8.1) holds. Since ϕ = 0, Φ0 = ϕ0 on ∂ΩD,
we see that the Dirichlet condition in (7.1) is satisfied.

Due to (8.6), the second term in (8.2) vanishes and by Lemma 4.2(i) we obtain

Ψ0 + ψ − T+u = 0 on ∂Ω, (8.7)
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which shows that the first equation of (8.1) is satisfied as well. Since ψ = 0, Ψ0 = ψ0

on ∂ΩN , equation (8.7) implies that u satisfies the Neumann boundary condition in
(7.1).

Proof for (M22). Now, let a triple (u, ψ, ϕ)t ∈ H1(Ω)× H̃− 1
2 (∂ΩD)× H̃ 1

2 (∂ΩN)
solve the BDIE system (M22). Taking the co-normal derivative of the first equation
in (M22) on ∂ΩD and subtracting it from the second equation, we obtain

ψ = T+u−Ψ0 on ∂ΩD. (8.8)

Taking the trace of the first equation in (M22) on ∂ΩN and subtracting it from
the third equation yields

ϕ = γ+u− Φ0 on ∂ΩN . (8.9)

Equation (8.8) and (8.9) imply that the first equation in (8.1) is satisfied on ∂ΩD

and the second one on ∂ΩN . Due to (8.8) and (8.9), we have Ψ∗ ∈ H̃− 1
2 (∂ΩN), Φ∗ ∈

H̃
1
2 (∂ΩD) in (8.2) and (8.3). Then Lemma 4.3 with Γ1 = ∂ΩN and Γ2 = ∂ΩD implies

that Ψ∗ = Φ∗ = 0, which completes the proof of conditions (8.1) on the whole
boundary ∂Ω. Taking into account that ϕ = 0,Φ0 = ϕ0 on ∂ΩD and ψ = 0,Ψ0 = ψ0

on ∂ΩN , equation (8.1) implies the boundary conditions in the mixed BVP (7.1).

Proof for (M21). Let a triple (u, ψ, ϕ)t ∈ H1(Ω)× H̃− 1
2 (∂ΩD)× H̃ 1

2 (∂ΩN) solve
the BDIE system (M21). We take the co-normal derivative of the first equation in
(M21) on ∂Ω and subtract the second equation from it to obtain

ψ + Ψ0 − T+u = 0 on ∂Ω, (8.10)

which is the first equation of (8.1). Since ψ = 0, Ψ0 = ψ0 on ∂ΩN , we see that u
satisfies the Neumann condition in (7.1).

Due to (8.10), the first term in (8.2) vanishes and, by Lemma 4.2(ii), we obtain

Φ0 + ϕ− γ+u = 0 on ∂Ω, (8.11)

which means that the second condition in (8.1) holds as well. Since ϕ = 0, Φ0 = ϕ0

on ∂ΩD, from equation (8.11) we see that u satisfies the Dirichlet boundary condition
in (7.1). �

Corollary 8.2. Let Φ0 ∈ H
1
2 (∂Ω) and Ψ0 ∈ H−

1
2 (∂Ω) be some extensions of ϕ0 ∈

H
1
2 (∂ΩD) and ψ0 ∈ H−

1
2 (∂ΩN), respectively, and let f ∈ L2(Ω).

(i) Let r0 > diam(Ω). If a triple (u, ψ, ϕ)t ∈ H1(Ω) × H̃− 1
2 (∂ΩD) × H̃ 1

2 (∂ΩN)
solves the BDIE system (M11) or (M12) or (M22), then it solves all the
other three BDIE systems.

(ii) Let r0 > 0. If a triple (u, ψ, ϕ)t ∈ H1(Ω) × H̃− 1
2 (∂ΩD) × H̃ 1

2 (∂ΩN) solves
the BDIE system (M21), then it solves (M11), (M12) and (M22).

Corollary 8.3.

(i) Let r0 > diam(Ω). The homogeneous counterpart of BDIE system (M11) or

(M12) or (M22) has a non-trivial solution in H1(Ω)×H̃− 1
2 (∂ΩD)×H̃ 1

2 (∂ΩN)
if and only if the homogeneous counterpart of the mixed problem (7.1) has a
non-trivial solution in H1(Ω).

(ii) Let r0 > 0. The homogeneous counterpart of BDIE system (M21) has a

non-trivial solution in H1(Ω)× H̃− 1
2 (∂ΩD)× H̃ 1

2 (∂ΩN) if and only if the ho-
mogeneous counterpart of the mixed problem (7.1) has a non-trivial solution
in H1(Ω).



21

Now, we prove the Fredholm property of the corresponding operators of the BDIE
system (M11), (M12) and (M21).

Theorem 8.4.

(i) If r0 > diam(Ω), operators (7.4) and (7.7) are Fredholm with index zero.
(ii) If r0 > 0, operator (7.9) is Fredholm with index zero.

Proof. Here we follow the arguments similar to the ones used in [6, for 3D case].
Operator (7.4). To prove the Fredholm property of operator (7.4), let us consider

the operator

M11
∗ :=

 I − V W
0 − r

∂ΩD
V 0

0 0 r
∂ΩN
L̂

 ,
where L̂ is given by (3.14).

The operatorM11
∗ is an upper triangular matrix operator with the following scalar

diagonal operators,

I : H1(Ω) −→ H1(Ω),

r
∂ΩD
V : H̃−

1
2 (∂ΩD) −→ H

1
2 (∂ΩD),

r
∂ΩN
L̂ : H̃

1
2 (∂ΩN) −→ H−

1
2 (∂ΩN),

that are invertible (due to Theorems 3.10 and 3.11(i) for the second and third
operators). Along with the mapping properties of the operators V and W (see
Theorem 3.3), the operator

M11
∗ : H1(Ω)× H̃−

1
2 (∂ΩD)× H̃

1
2 (∂ΩN) −→ H1(Ω)×H

1
2 (∂ΩD)×H−

1
2 (∂ΩN)

is invertible. The operator

M11
k −M11

∗ : H1(Ω)× H̃−
1
2 (∂ΩD)× H̃

1
2 (∂ΩN) −→ H1(Ω)×H

1
2 (∂ΩD)×H−

1
2 (∂ΩN),

where

M11
k −M11

∗ :=

 Rk 0 0
r
∂ΩD

γ+Rk 0 r
∂ΩD
W

r
∂ΩN

T+Rk − r
∂ΩN
W ′ r

∂ΩN

(
L+ − L̂

)
 .

is compact due to Corollaries 3.15 and 3.17 as well as Theorems 3.6 and 3.11(ii).
Hence (7.4) is a Fredholm operator with zero index.

Operator (7.7). Let us denote

M12
∗ :=

[
I − V W
0 − V 1

2
I

]
.

Then

M12
∗ : H1(Ω)× H̃−

1
2 (∂ΩD)× H̃

1
2 (∂ΩN) −→ H1(Ω)×H

1
2 (∂Ω)

is bounded. To show the invertibility ofM12
∗ , taking into account Theorem 3.10 we

follow the proof for 3D case in [6]. Consider the equation

M12
∗ U = F̃ (8.12)
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with an unknown vector U = (u, ψ, ϕ)t ∈ H1(Ω) × H̃− 1
2 (∂ΩD) × H̃ 1

2 (∂ΩN) and a

given vector F̃ := (F̃1, F̃2)t ∈ H1(Ω)×H 1
2 (∂Ω). Rewrite (7.9) componentwise as

u− V ψ +Wϕ = F̃1 in Ω, (8.13)

1

2
ϕ− Vψ = F̃2 on ∂Ω. (8.14)

The restriction of equation (8.14) on ∂ΩD gives

−r
∂ΩD
Vψ = r∂ΩD

F̃2. (8.15)

Due to Theorem 3.10, equation (8.15) is uniquely solvable, i.e., for arbitrary F̃2 ∈
H

1
2 (∂Ω) there exists a unique ψ ∈ H̃− 1

2 (∂ΩD) satisfying (8.15). Moreover,[
Vψ + F̃2

]
∈ H̃

1
2 (∂ΩN). (8.16)

Then (8.14) along with (8.16) yields that ϕ is defined also uniquely as

ϕ = 2
[
Vψ + F̃2

]
∈ H̃

1
2 (∂ΩN).

Hence equation (8.14) with arbitrary F̃2 ∈ H̃
1
2 (∂Ω) defines ϕ ∈ H̃

1
2 (∂ΩN) and

ψ ∈ H̃− 1
2 (∂ΩD) uniquely. Since V ψ, Wϕ ∈ H1(Ω), from equation (8.13) we obtain

that
u = V ψ −Wϕ+ F̃1 in Ω,

showing that the function u ∈ H1(Ω) is also defined uniquely. The above arguments
show that operator M12

∗ is invertible.
Due to Corollaries 3.5 and 3.15, the operator

M12
k −M12

∗ : H1(Ω)× H̃−
1
2 (∂ΩD)× H̃

1
2 (∂ΩN) −→ H1(Ω)×H

1
2 (∂Ω)

where

M12
k −M12

∗ :=

[
Rk 0 0
γ+Rk 0 W

]
,

is compact. Then operator (7.7) is Fredholm of index zero.
Operator (7.9). The proof for operator (7.9) follows by the arguments similar

to those in the proof for operator (7.7). Let

M21
∗ :=

[
I − V W

0 1
2
I L̂

]
.

Then
M21
∗ : H1(Ω)× H̃−

1
2 (∂ΩD)× H̃

1
2 (∂ΩN) −→ H1(Ω)×H−

1
2 (∂Ω)

is bounded. Since the operators I : H1(Ω)→ H1(Ω) and L̂ : H̃
1
2 (∂ΩN)→ H−

1
2 (∂Ω)

are invertible, using similar arguments as in the proof of the operator (7.7), we can
show that M21

∗ is invertible.
Due to the mapping properties of the operators involved, the operator

M21
k −A21

∗ : H1(Ω)× H̃−
1
2 (∂ΩD)× H̃

1
2 (∂ΩN) −→ H1(Ω)×H−

1
2 (∂Ω),

where

M21
k −M21

∗ :=

[
Rk 0 0

T+Rk −W ′
(
L+ − L̂

) ]
is compact implying that M21

k is Fredholm operator of index zero. �
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Let us consider the particular cases of operators (7.4), (7.5), (7.7), (7.8), (7.9) and
(7.10), for k = 0, that is,

M11
0 : H1(Ω)× H̃−

1
2 (∂ΩD)× H̃

1
2 (∂ΩN)

−→ H1(Ω)×H
1
2 (∂ΩD)×H−

1
2 (∂ΩN), (8.17)

M11
0 : H1,0(Ω;A)× H̃−

1
2 (∂ΩD)× H̃

1
2 (∂ΩN)

−→ H1,0(Ω;A)×H
1
2 (∂ΩD)×H−

1
2 (∂ΩN), (8.18)

M12
0 : H1(Ω)× H̃−

1
2 (∂ΩD)× H̃

1
2 (∂ΩN) −→ H1(Ω)×H

1
2 (∂Ω), (8.19)

M12
0 : H1,0(Ω;A)× H̃−

1
2 (∂ΩD)× H̃

1
2 (∂ΩN) −→ H1,0(Ω;A)×H

1
2 (∂Ω), (8.20)

M21
0 : H1(Ω)× H̃−

1
2 (∂ΩD)× H̃

1
2 (∂ΩN) −→ H1(Ω)×H−

1
2 (∂Ω), (8.21)

M21
0 : H1,0(Ω;A)× H̃−

1
2 (∂ΩD)× H̃

1
2 (∂ΩN) −→ H1,0(Ω;A)×H−

1
2 (∂Ω). (8.22)

where

M11
0 =

 I +R − V W
r
∂ΩD

γ+R − r
∂ΩD
V r

∂ΩD
W

r
∂ΩN

T+R − r
∂ΩN
W ′ r

∂ΩN
L+

 ,
M12

0 =

[
I +R −V W
γ+R −V 1

2
I +W

]
, M21

0 =

[
I +R −V W
T+R 1

2
I −W ′ L+

]
.

Theorem 8.5.
(i) If r0 > diam(Ω), then operators (8.17), (8.18), (8.19) and (8.20) are invertible.
(i) If r0 > 0, then operators (8.21) and (8.22) are invertible.

Proof. This theorem for r0 = 1 was proved in [12, Theorem 3.25]. Here we update
the proof for arbitrary r0 > 0 similar to Theorem 6.5 for the BDIE system of the
Dirichlet problem.

It is well known that the homogeneous mixed problem (7.1) with k = 0, that is,
with Ak = A, where the operator A is given by (2.1) and 0 < a0 < a(x) < a1 <∞,
has only the trivial solution in H1,0(Ω;A) and H1(Ω). This can be obtained, e.g.,
from the first Green identity (2.7). Then the equivalence Theorem 8.1 implies that
all operators (8.17)–(8.22) are injective. By Theorem 8.4, operators (8.17), (8.19)
and (8.21) are Fredholm with zero index. Then the injectivity of operators (8.17),
(8.19) and (8.21) implies their invertibility, see, e.g., [18, Theorem 2.27].

To prove the invertibility of operator (8.18), we remark that for any F11 ∈
H1,0(Ω;A)×H 1

2 (∂ΩD)×H− 1
2 (∂ΩN), a solution of the equationM11

0 U = F11 can be

written as U = (M11
0 )−1F11, where (M11

0 )−1 : H1(Ω) ×H 1
2 (∂ΩD) ×H− 1

2 (∂ΩN) →
H1(Ω) × H̃− 1

2 (∂ΩD) × H̃ 1
2 (∂ΩN) is the continuous inverse to operator (8.17). But

due to Lemma 4.1 the first equation of system (M11) with k = 0 implies that

U = (M11
0 )−1F11 ∈ H1,0(Ω;Ak) × H̃−

1
2 (∂ΩD) × H̃ 1

2 (∂ΩN) and moreover, the oper-

ator (M11
0 )−1 : H1,0(Ω;A)×H 1

2 (∂ΩD)×H− 1
2 (∂ΩN)→ H1,0(Ω;Ak)× H̃−

1
2 (∂ΩD)×

H̃
1
2 (∂ΩN) is continuous, which implies invertibility of operator (8.18).
The invertibility of operators (8.20) and (8.22) is proved in a similar fashion. �

Now, we are in the position to prove an analogue of Theorem 8.4 for operators
(7.5), (7.8) and (7.10).
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Theorem 8.6.

(i) If r0 > diam(Ω), operators (7.5) and (7.8) are Fredholm with index zero.
(ii) If r0 > 0, operator (7.10) is Fredholm with index zero.

Proof. By Theorem 8.5 we see that operators (8.18), (8.20) and (8.22) are invertible.
Due to Corollaries 3.16, the operators

M11
k −M11

0 : H1,0(Ω;Ak)× H̃−
1
2 (∂ΩD)× H̃

1
2 (∂ΩN)

−→ H1,0(Ω;Ak)×H
1
2 (∂ΩD)×H−

1
2 (∂ΩN),

M12
k −M12

0 : H1,0(Ω;Ak)× H̃−
1
2 (∂ΩD)× H̃

1
2 (∂ΩN) −→ H1,0(Ω;Ak)×H

1
2 (∂Ω),

M21
k −M21

0 : H1,0(Ω;Ak)× H̃−
1
2 (∂ΩD)× H̃

1
2 (∂ΩN) −→ H1,0(Ω;Ak)×H−

1
2 (∂Ω).

where

M11
k −M11

0 =

 Rk −R 0 0
r
∂ΩD

γ+(Rk −R) 0 0

r
∂ΩN

T+(Rk −R) 0 0

 ,
M12

k −M12
0 =

[
Rk −R 0 0
γ+(Rk −R) 0 0

]
, M21

k −M21
0 =

[
Rk −R 0 0
T+(Rk −R) 0 0

]
.

are compact, implying that operators (7.5), (7.8) and (7.10) are Fredholm operators
with index zero. �

Due to Corollary 8.3 and Theorem 8.4 we obtain the following assertion.

Corollary 8.7.

(i) Let r0 > diam(Ω). The homogeneous counterpart of the mixed problem (7.1)
has only the trivial solution in H1(Ω) if and only if the operators (7.4), (7.5),
(7.7) and (7.8) are invertible.

(ii) Let r0 > 0. The homogeneous counterpart of the mixed problem (7.1) has
only the trivial solution in H1(Ω) if and only if the operators (7.9) and (7.10)
are invertible.

Remark 8.8. Equivalence, Fredholm properties and invertibility for BDIE operators
(7.11) and (7.12), for M22

k , are not analysed in Section 8. Note that they can be
considered using a different approach similar to [9, Theorem 7.1], [12, Theorem 3.31],
cf. also [6, Theorems 5.15, 5.19].
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