1,615 research outputs found

    General analysis of signals with two leptons and missing energy at the Large Hadron Collider

    Full text link
    A signal of two leptons and missing energy is challenging to analyze at the Large Hadron Collider (LHC) since it offers only few kinematical handles. This signature generally arises from pair production of heavy charged particles which each decay into a lepton and a weakly interacting stable particle. Here this class of processes is analyzed with minimal model assumptions by considering all possible combinations of spin 0, 1/2 or 1, and of weak iso-singlets, -doublets or -triplets for the new particles. Adding to existing work on mass and spin measurements, two new variables for spin determination and an asymmetry for the determination of the couplings of the new particles are introduced. It is shown that these observables allow one to independently determine the spin and the couplings of the new particles, except for a few cases that turn out to be indistinguishable at the LHC. These findings are corroborated by results of an alternative analysis strategy based on an automated likelihood test.Comment: 18 pages, 3 figures, LaTe

    Search for WW and WZ production in lepton plus jets final state at CDF

    Get PDF
    We present a search for WW and WZ production in final states that contain a charged lepton (electron or muon) and at least two jets, produced in sqrt(s) = 1.96 TeV ppbar collisions at the Fermilab Tevatron, using data corresponding to 1.2 fb-1 of integrated luminosity collected with the CDF II detector. Diboson production in this decay channel has yet to be observed at hadron colliders due to the large single W plus jets background. An artificial neural network has been developed to increase signal sensitivity, as compared with an event selection based on conventional cuts. We set a 95% confidence level upper limit of sigma_{WW}* BR(W->lnu,W->jets)+ sigma_{WZ}*BR(W->lnu,Z->jets)We present a search for WW and WZ production in final states that contain a charged lepton (electron or muon) and at least two jets, produced in √s=1.96  TeV pp̅ collisions at the Fermilab Tevatron, using data corresponding to 1.2  fb-1 of integrated luminosity collected with the CDF II detector. Diboson production in this decay channel has yet to be observed at hadron colliders due to the large single W plus jets background. An artificial neural network has been developed to increase signal sensitivity, as compared with an event selection based on conventional cuts. We set a 95% confidence level upper limit of σWW×BR(W→ℓνℓ,W→jets)+σWZ×BR(W→ℓνℓ,Z→jets)<2.88  pb, which is consistent with the standard model next-to-leading-order cross section calculation for this decay channel of 2.09±0.12  pb.Peer reviewe

    Dark energy and dark matter from an inhomogeneous dilaton

    Full text link
    A cosmological scenario is proposed where the dark matter (DM) and dark energy (DE) of the universe are two simultaneous manifestations of an inhomogenous dilaton. The equation of state of the field is scale-dependent and pressureless at galactic and larger scales and it has negative pressure as a DE at very large scales. The dilaton drives an inflationary phase followed by a kinetic energy-dominated one, as in the "quintessential inflation" model introduced by Peebles & Vilenkin, and soon after the end of inflation particle production seeds the first inhomogeneities that lead to galaxy formation. The dilaton is trapped near the minimum of the potential where it oscillates like a massive field, and the excess of kinetic energy is dissipated via the mechanism of "gravitational cooling" first introduced by Seidel & Suen. The inhomogeneities therefore behave like solitonic oscillations around the minimum of the potential, known as "oscillatons", that we propose account for most DM in galaxies. Those regions where the dilaton does not transform enough kinetic energy into reheating or carry an excess of it from regions that have cooled, evolve to the tail of the potential as DE, driving the acceleration of the universe.Comment: 9 pages, 8 figures, uses revtex, submitted PR

    Identifying placebo responders and predictors of response in osteoarthritis: a protocol for individual patient data meta-analysis

    Get PDF
    Background: The management of osteoarthritis (OA) is unsatisfactory, as most treatments are not clinically effective over placebo and most drugs have considerable side effects. On average, 75 % of the analgesic effect from OA treatments in clinical trials can be attributed to a placebo response, and this response varies greatly from patient to patient. This individual patient data (IPD) meta-analysis aims to identify placebo responders and the potential determinants of the placebo response in OA. Methods: This study is undertaken in conjunction with the OA Trial Bank, an ongoing international consortium aiming to collect IPD from randomised controlled trials (RCTs) for all treatments of OA. RCTs for each treatment of OA have been systematically searched for, and authors of the relevant trials have been contacted to request the IPD. We will use the IPD of placebo-controlled RCTs held by the OA Trial Bank for this project. The IPD in placebo groups will be used to investigate the placebo response according to the minimum clinically important difference (MCID) threshold (e.g. 20 % pain reduction). Responders to placebo will be compared with non-responders to identify predictors of response. The quality of the trials will be assessed and potential determinants will be examined using multilevel logistic regression analyses. Discussion: This study explores the varying magnitude of the placebo response and the proportion of participants that experience a clinically important placebo effect in OA RCTs. Potential determinants of the placebo response will also be investigated. These determinants may be useful for future studies as it may allow participants to be stratified into groups based on their likely response to placebo. The results of this study may also be useful for pharmaceutical companies, who could improve the design of their studies in order to separate the specific treatment from the non-specific contextual (i.e. placebo) effects

    On logical hierarchies within FO^2-definable languages

    Full text link
    We consider the class of languages defined in the 2-variable fragment of the first-order logic of the linear order. Many interesting characterizations of this class are known, as well as the fact that restricting the number of quantifier alternations yields an infinite hierarchy whose levels are varieties of languages (and hence admit an algebraic characterization). Using this algebraic approach, we show that the quantifier alternation hierarchy inside FO^{2}[<] is decidable within one unit. For this purpose, we relate each level of the hierarchy with decidable varieties of languages, which can be defined in terms of iterated deterministic and co-deterministic products. A crucial notion in this process is that of condensed rankers, a refinement of the rankers of Weis and Immerman and the turtle languages of Schwentick, Th\'erien and Vollmer.Comment: arXiv admin note: text overlap with arXiv:0904.289

    First measurement of the Hubble Constant from a Dark Standard Siren using the Dark Energy Survey Galaxies and the LIGO/Virgo Binary–Black-hole Merger GW170814

    Get PDF
    International audienceWe present a multi-messenger measurement of the Hubble constant H 0 using the binary–black-hole merger GW170814 as a standard siren, combined with a photometric redshift catalog from the Dark Energy Survey (DES). The luminosity distance is obtained from the gravitational wave signal detected by the Laser Interferometer Gravitational-Wave Observatory (LIGO)/Virgo Collaboration (LVC) on 2017 August 14, and the redshift information is provided by the DES Year 3 data. Black hole mergers such as GW170814 are expected to lack bright electromagnetic emission to uniquely identify their host galaxies and build an object-by-object Hubble diagram. However, they are suitable for a statistical measurement, provided that a galaxy catalog of adequate depth and redshift completion is available. Here we present the first Hubble parameter measurement using a black hole merger. Our analysis results in , which is consistent with both SN Ia and cosmic microwave background measurements of the Hubble constant. The quoted 68% credible region comprises 60% of the uniform prior range [20, 140] km s−1 Mpc−1, and it depends on the assumed prior range. If we take a broader prior of [10, 220] km s−1 Mpc−1, we find (57% of the prior range). Although a weak constraint on the Hubble constant from a single event is expected using the dark siren method, a multifold increase in the LVC event rate is anticipated in the coming years and combinations of many sirens will lead to improved constraints on H 0

    GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2

    Get PDF
    We describe the observation of GW170104, a gravitational-wave signal produced by the coalescence of a pair of stellar-mass black holes. The signal was measured on January 4, 2017 at 10: 11: 58.6 UTC by the twin advanced detectors of the Laser Interferometer Gravitational-Wave Observatory during their second observing run, with a network signal-to-noise ratio of 13 and a false alarm rate less than 1 in 70 000 years. The inferred component black hole masses are 31.2(-6.0)(+8.4)M-circle dot and 19.4(-5.9)(+5.3)M(circle dot) (at the 90% credible level). The black hole spins are best constrained through measurement of the effective inspiral spin parameter, a mass-weighted combination of the spin components perpendicular to the orbital plane, chi(eff) = -0.12(-0.30)(+0.21) . This result implies that spin configurations with both component spins positively aligned with the orbital angular momentum are disfavored. The source luminosity distance is 880(-390)(+450) Mpc corresponding to a redshift of z = 0.18(-0.07)(+0.08) . We constrain the magnitude of modifications to the gravitational-wave dispersion relation and perform null tests of general relativity. Assuming that gravitons are dispersed in vacuum like massive particles, we bound the graviton mass to m(g) &lt;= 7.7 x 10(-23) eV/c(2). In all cases, we find that GW170104 is consistent with general relativity

    Anxiety and Depression in Adults with Autism Spectrum Disorder: A Systematic Review and Meta-analysis

    Get PDF
    Adults with autism spectrum disorder (ASD) are thought to be at disproportionate risk of developing mental health comorbidities, with anxiety and depression being considered most prominent amongst these. Yet, no systematic review has been carried out to date to examine rates of both anxiety and depression focusing specifically on adults with ASD. This systematic review and meta-analysis examined the rates of anxiety and depression in adults with ASD and the impact of factors such as assessment methods and presence of comorbid intellectual disability (ID) diagnosis on estimated prevalence rates. Electronic database searches for studies published between January 2000 and September 2017 identified a total of 35 studies, including 30 studies measuring anxiety (n = 26 070; mean age = 30.9, s.d. = 6.2 years) and 29 studies measuring depression (n = 26 117; mean age = 31.1, s.d. = 6.8 years). The pooled estimation of current and lifetime prevalence for adults with ASD were 27% and 42% for any anxiety disorder, and 23% and 37% for depressive disorder. Further analyses revealed that the use of questionnaire measures and the presence of ID may significantly influence estimates of prevalence. The current literature suffers from a high degree of heterogeneity in study method and an overreliance on clinical samples. These results highlight the importance of community-based studies and the identification and inclusion of well-characterized samples to reduce heterogeneity and bias in estimates of prevalence for comorbidity in adults with ASD and other populations with complex psychiatric presentations
    corecore