2,767 research outputs found

    Small Angle X-ray Scattering analysis of porous powders of CaCO3

    Get PDF

    An overview of the mid-infrared spectro-interferometer MATISSE: science, concept, and current status

    Full text link
    MATISSE is the second-generation mid-infrared spectrograph and imager for the Very Large Telescope Interferometer (VLTI) at Paranal. This new interferometric instrument will allow significant advances by opening new avenues in various fundamental research fields: studying the planet-forming region of disks around young stellar objects, understanding the surface structures and mass loss phenomena affecting evolved stars, and probing the environments of black holes in active galactic nuclei. As a first breakthrough, MATISSE will enlarge the spectral domain of current optical interferometers by offering the L and M bands in addition to the N band. This will open a wide wavelength domain, ranging from 2.8 to 13 um, exploring angular scales as small as 3 mas (L band) / 10 mas (N band). As a second breakthrough, MATISSE will allow mid-infrared imaging - closure-phase aperture-synthesis imaging - with up to four Unit Telescopes (UT) or Auxiliary Telescopes (AT) of the VLTI. Moreover, MATISSE will offer a spectral resolution range from R ~ 30 to R ~ 5000. Here, we present one of the main science objectives, the study of protoplanetary disks, that has driven the instrument design and motivated several VLTI upgrades (GRA4MAT and NAOMI). We introduce the physical concept of MATISSE including a description of the signal on the detectors and an evaluation of the expected performances. We also discuss the current status of the MATISSE instrument, which is entering its testing phase, and the foreseen schedule for the next two years that will lead to the first light at Paranal.Comment: SPIE Astronomical Telescopes and Instrumentation conference, June 2016, 11 pages, 6 Figure

    First Observation of CP Violation in B0->D(*)CP h0 Decays by a Combined Time-Dependent Analysis of BaBar and Belle Data

    Get PDF
    We report a measurement of the time-dependent CP asymmetry of B0->D(*)CP h0 decays, where the light neutral hadron h0 is a pi0, eta or omega meson, and the neutral D meson is reconstructed in the CP eigenstates K+ K-, K0S pi0 or K0S omega. The measurement is performed combining the final data samples collected at the Y(4S) resonance by the BaBar and Belle experiments at the asymmetric-energy B factories PEP-II at SLAC and KEKB at KEK, respectively. The data samples contain ( 471 +/- 3 ) x 10^6 BB pairs recorded by the BaBar detector and ( 772 +/- 11 ) x 10^6, BB pairs recorded by the Belle detector. We measure the CP asymmetry parameters -eta_f S = +0.66 +/- 0.10 (stat.) +/- 0.06 (syst.) and C = -0.02 +/- 0.07 (stat.) +/- 0.03 (syst.). These results correspond to the first observation of CP violation in B0->D(*)CP h0 decays. The hypothesis of no mixing-induced CP violation is excluded in these decays at the level of 5.4 standard deviations.Comment: 9 pages, 2 figures, submitted to Physical Review Letter

    Measurement of ISR-FSR interference in the processes e+ e- --> mu+ mu- gamma and e+ e- --> pi+ pi- gamma

    Get PDF
    Charge asymmetry in processes e+ e- --> mu+ mu- gamma and e+ e- --> pi+ pi- gamma is measured using 232 fb-1 of data collected with the BABAR detector at center-of-mass energies near 10.58 GeV. An observable is introduced and shown to be very robust against detector asymmetries while keeping a large sensitivity to the physical charge asymmetry that results from the interference between initial and final state radiation. The asymmetry is determined as afunction of the invariant mass of the final-state tracks from production threshold to a few GeV/c2. It is compared to the expectation from QED for e+ e- --> mu+ mu- gamma and from theoretical models for e+ e- --> pi+ pi- gamma. A clear interference pattern is observed in e+ e- --> pi+ pi- gamma, particularly in the vicinity of the f_2(1270) resonance. The inferred rate of lowest order FSR production is consistent with the QED expectation for e+ e- --> mu+ mu- gamma, and is negligibly small for e+ e- --> pi+ pi- gamma.Comment: 32 pages,29 figures, to be submitted to Phys. Rev.

    Measurement of the quasi-elastic axial vector mass in neutrino-oxygen interactions

    Get PDF
    The weak nucleon axial-vector form factor for quasi-elastic interactions is determined using neutrino interaction data from the K2K Scintillating Fiber detector in the neutrino beam at KEK. More than 12,000 events are analyzed, of which half are charged-current quasi-elastic interactions nu-mu n to mu- p occurring primarily in oxygen nuclei. We use a relativistic Fermi gas model for oxygen and assume the form factor is approximately a dipole with one parameter, the axial vector mass M_A, and fit to the shape of the distribution of the square of the momentum transfer from the nucleon to the nucleus. Our best fit result for M_A = 1.20 \pm 0.12 GeV. Furthermore, this analysis includes updated vector form factors from recent electron scattering experiments and a discussion of the effects of the nucleon momentum on the shape of the fitted distributions.Comment: 14 pages, 10 figures, 6 table

    Search for the W-exchange decays B0 --> Ds(*)- Ds(*)+

    Full text link
    We report a search for the decays B0DsDs+B^{0} \to D_{s}^{-} D_{s}^{+}, B0DsDs+B^{0} \to D_{s}^{*-} D_{s}^{+}, B0DsDs+B^{0} \to D_{s}^{*-} D_{s}^{*+} in a sample of 232 million Υ(4S)\Upsilon(4S) decays to \BBb ~pairs collected with the \babar detector at the PEP-II asymmetric-energy e+ee^+ e^- storage ring. We find no significant signal and set upper bounds for the branching fractions: B(B0DsDs+)<1.0×104,B(B0DsDs+)<1.3×104{\cal B}(B^{0} \to D_{s}^{-} D_{s}^{+}) < 1.0 \times 10^{-4}, {\cal B}(B^{0} \to D_{s}^{*-} D_{s}^{+}) < 1.3 \times 10^{-4} and B(B0DsDs+)<2.4×104{\cal B}(B^{0} \to D_{s}^{*-} D_{s}^{*+}) < 2.4 \times 10^{-4} at 90% confidence level.Comment: 8 pages, 2 figures, submitted to PRD-R

    Measurement of the cross-section and charge asymmetry of WW bosons produced in proton-proton collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector

    Get PDF
    This paper presents measurements of the W+μ+νW^+ \rightarrow \mu^+\nu and WμνW^- \rightarrow \mu^-\nu cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables, submitted to EPJC. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13

    Measurement of χ c1 and χ c2 production with s√ = 7 TeV pp collisions at ATLAS

    Get PDF
    The prompt and non-prompt production cross-sections for the χ c1 and χ c2 charmonium states are measured in pp collisions at s√ = 7 TeV with the ATLAS detector at the LHC using 4.5 fb−1 of integrated luminosity. The χ c states are reconstructed through the radiative decay χ c → J/ψγ (with J/ψ → μ + μ −) where photons are reconstructed from γ → e + e − conversions. The production rate of the χ c2 state relative to the χ c1 state is measured for prompt and non-prompt χ c as a function of J/ψ transverse momentum. The prompt χ c cross-sections are combined with existing measurements of prompt J/ψ production to derive the fraction of prompt J/ψ produced in feed-down from χ c decays. The fractions of χ c1 and χ c2 produced in b-hadron decays are also measured
    corecore