# First Observation of $C P$ Violation in $\bar{B}^{0} \rightarrow D_{C P}^{(*)} h^{0}$ Decays by a Combined Time-Dependent Analysis of BABAR and Belle Data 

A. Abdesselam, ${ }^{120, \hbar}$ I. Adachi, ${ }^{40,34, \hbar}$ A. Adametz,${ }^{39, \dagger}$ T. Adye ${ }^{109, \dagger}$ H. Ahmed ${ }^{52, \dagger}$ H. Aihara, ${ }^{130, \hbar}$ S. Akar, ${ }^{100, \dagger}$ M. S. Alam, ${ }^{117, \uparrow}$ J. Albert, ${ }^{136, \dagger}$ S. Al Said, ${ }^{120,58, \hbar}$ R. Andreassen, ${ }^{22, \dagger}$ C. Angelini, ${ }^{103 a, 103 b, \dagger}$ F. Anulli, ${ }^{107 a, \dagger}$ K. Arinstein, ${ }^{12,13,{ }^{12,}}$ N. Arnaud ${ }^{62, \uparrow}$ D. M. Asner, ${ }^{98,7}$ D. Aston, ${ }^{113, \dagger}$ V. Aulchenko, ${ }^{12,13, \ddagger}$ T. Aushev, ${ }^{84,48, \ddagger}$ R. Ayad, ${ }^{120,24, \uparrow, 7 \%}$ V. Babu, ${ }^{121,7}$ I. Badhrees ${ }^{120,57, \%}$ S. Bahinipati, ${ }^{43, \ddagger}$ A. M. Bakich, ${ }^{119, \ddagger}$ H. R. Band, ${ }^{140, \dagger}$ Sw. Banerjee, ${ }^{136, \dagger}$ E. Barberio, ${ }^{79, \ddagger}$ D. J. Bard, ${ }^{113, \dagger}$ R. J. Barlow, ${ }^{73, \xi^{\prime} \uparrow}$ G. Batignani, ${ }^{103 a, 103 b, \dagger}$ A. Beaulieu, ${ }^{136, \dagger}$ M. Bellis, ${ }^{116,{ }^{1} \dagger}$ E. Ben-Haim, ${ }^{100, \dagger}$ D. Bernard, ${ }^{27, \dagger}$ F. U. Bernlochner, ${ }^{136, \dagger}$
S. Bettarini, ${ }^{103 a, 103 b, \dagger}$ D. Bettoni, ${ }^{29 a, \dagger}$ A. J. Bevan, ${ }^{67, \dagger}$ V. Bhardwaj, ${ }^{114, \dagger}$ B. Bhuyan, ${ }^{35, \uparrow, \hbar}$ F. Bianchi, ${ }^{133 a, 133 b, \dagger}$ M. Biasini, ${ }^{102 a, 102 b, \dagger}$ J. Biswal, ${ }^{51, \hbar}$ V. E. Blinov, ${ }^{12,13,14, \dagger}$ P. C. Bloom, ${ }^{23, \dagger}$ A. Bobrov, ${ }^{12,13,7}$ M. Bomben, ${ }^{100,{ }^{\dagger} \dagger}$ A. Bondar, ${ }^{12,13, \#}$ G. R. Bonneaud, ${ }^{100, \dagger}$ G. Bonvicini, ${ }^{139, \ddagger}$ A. Bozek, ${ }^{93, \ddagger}$ C. Bozzi, ${ }^{29 a, \dagger}$ M. Bračko, ${ }^{74,51, \ddagger}$ H. Briand, ${ }^{100, \dagger}$ T. E. Browder ${ }^{38, \ddagger}$ D. N. Brown, ${ }^{7, \dagger}$ D. N. Brown, ${ }^{69, \dagger}$ C. Bünger, ${ }^{108, \dagger}$ P. R. Burchat, ${ }^{116, \dagger}$ A. R. Buzykaev, ${ }^{12, \dagger}$ R. Calabrese, ${ }^{29,29 b, \dagger}$ A. Calcaterra, ${ }^{30, \dagger}$ G. Calderini, ${ }^{100, \dagger}$ M. Carpinelli, ${ }^{103 a, 103 b, \|, \dagger}$ C. Cartaro, ${ }^{113, \dagger}$ G. Casarosa, ${ }^{103 a, 103 b, \dagger}$ R. Cenci, ${ }^{75, \uparrow}$ D. Červenkov, ${ }^{20, \hbar}$ P. Chang ${ }^{92, \hbar}$ D. S. Chao,$^{19, \dagger}$ J. Chauveau, ${ }^{100, \dagger}$ R. Cheaib, ${ }^{78, \uparrow}$ V. Chekelian, ${ }^{77, \hbar}$ A. Chen, ${ }^{89, \ddagger}$ C. Chen, ${ }^{50, \uparrow}$ C. H. Cheng, ${ }^{19, \dagger}$ B. G. Cheon, ${ }^{37, \ddagger}$ K. Chilikin,,${ }^{48, \ddagger}$ R. Chistov, ${ }^{48,{ }^{7}}$ K. Cho, ${ }^{59, \ddagger}$ V. Chobanova, ${ }^{77, \ddagger}$ H. H. F. Choi, ${ }^{136, \uparrow}$ S.-K. Choi, ${ }^{36, \ddagger}$ M. Chrzaszcz, ${ }^{103 a, \dagger}$ G. Cibinetto, ${ }^{29 a, 29 b, \dagger}$ D. Cinabro, ${ }^{139, \ddagger}$ J. Cochran, ${ }^{50, \uparrow}$ J. P. Coleman ${ }^{65, \dagger}$ R. Contri, ${ }^{311 a, 31 b, \uparrow}$ M. R. Convery, ${ }^{113, \dagger}$ G. Cowan,${ }^{68, \dagger}$ R. Cowan, ${ }^{76, \dagger}$ L. Cremaldi, ${ }^{81, \dagger}$ J. Dalseno, ${ }^{77,122, \dagger}$ S. Dasu, ${ }^{140, \dagger}$ M. Davier, ${ }^{62, \dagger}$ C. L. Davis, ${ }^{69, \dagger}$ F. De Mori, ${ }^{133 a, 133 b, \dagger}$ G. De Nardo, ${ }^{87 a, 87 b, \dagger}$ A. G. Denig, ${ }^{72, \uparrow}$ D. Derkach, ${ }^{62, \dagger}$ R. de Sangro, ${ }^{30, \dagger}$ B. Dey, ${ }^{16, \dagger}$ F. Di Lodovico ${ }^{67, \dagger}$ J. Dingfelder ${ }^{9,{ }^{9}}$ S. Dittrich, ${ }^{108, \dagger}$ Z. Doležal, ${ }^{20, \ddagger}$ J. Dorfan, ${ }^{113, \dagger}$ Z. Drásal, ${ }^{20,{ }^{1}}$ A. Drutskoy, ${ }^{48,83, \ddagger}$ V. P. Druzhinin, ${ }^{12,13, \dagger}$ G. P. Dubois-Felsmann, ${ }^{113, \dagger}$ W. Dunwoodie,,${ }^{113, \dagger}$ D. Dutta, ${ }^{121, \hbar}$ M. Ebert, ${ }^{113, \dagger}$ B. Echenard ${ }^{19,{ }^{19}}$ S. Eidelman, ${ }^{12,13, *}$ G. Eigen, ${ }^{6, \dagger}$ A. M. Eisner, ${ }^{18, \dagger}$ S. Emery ${ }^{110,{ }^{1}{ }^{\dagger}}$ J. A. Ernst, ${ }^{117, \dagger}$ R. Faccini, ${ }^{107 a, 107 b,{ }^{\dagger}}$ H. Farhat ${ }^{139,{ }^{19}}$ J. E. Fast, ${ }^{98, \ddagger}$ M. Feindt, ${ }^{55, \ddagger}$ T. Ferber ${ }^{25, \ddagger}$ F. Ferrarotto, ${ }^{107 \mathrm{a}, \dagger}$ F. Ferroni, ${ }^{107 \mathrm{a}, 107 \mathrm{~b}, \dagger}$ R. C. Field, ${ }^{113, \uparrow}$ A. Filippi, ${ }^{133 \mathrm{a}, \dagger}$ G. Finocchiaro, ${ }^{30, \dagger}$ E. Fioravanti, ${ }^{29 a, 29 b, \dagger}$ K. T. Flood, ${ }^{19, \dagger}$ W. T. Ford, ${ }^{23, \dagger}$ F. Forti, ${ }^{103 a, 103 b, \dagger}$ M. Franco Sevilla, ${ }^{17, \dagger}$
M. Fritsch ${ }^{72, \dagger}$ J. R. Fry, ${ }^{65, \dagger}$ B. G. Fulsom, ${ }^{98,113, \uparrow, \dagger}$ E. Gabathuler ${ }^{65, \dagger}$ N. Gabyshev, ${ }^{12,13, \uparrow}$ D. Gamba, ${ }^{133 a, 133 b, \uparrow}$
A. Garmash, ${ }^{12,13, \ddagger}$ J. W. Gary, ${ }^{16, \dagger}$ I. Garzia ${ }^{29 a, 29 b, \dagger}$ M. Gaspero, ${ }^{107 a, 107 b, \dagger}$ V. Gaur, ${ }^{121,{ }^{17}}$ A. Gaz, ${ }^{23, \uparrow}$ T. J. Gershon, ${ }^{138, \uparrow}$ D. Getzkow, ${ }^{32, \ddagger}$ R. Gillard, ${ }^{139, \hbar}$ L. Li Gioi, ${ }^{77, \%}$ M. A. Giorgi, ${ }^{103 a, 103 b, \dagger}$ R. Glattauer, ${ }^{46,7}$ R. Godang, ${ }^{81, G, 7}$ Y. M. Goh, ${ }^{37, \$}$ P. Goldenzweig, ${ }^{55,{ }^{7}}$ B. Golob, ${ }^{66,51, \dagger}$ V. B. Golubev, ${ }^{12,13, \dagger}$ R. Gorodeisky, ${ }^{123, \dagger}$ W. Gradl, ${ }^{72, \dagger}$ M. T. Graham, ${ }^{13, \dagger}$ E. Grauges, ${ }^{2, \dagger}$ K. Griessinger, ${ }^{72, \dagger}$ A. V. Gritsan, ${ }^{53, \dagger}$ G. Grosdidier, ${ }^{62, \dagger}$ O. Grünberg, ${ }^{108, \dagger}$ N. Guttman, ${ }^{123, \dagger}$ J. Haba, ${ }^{40,34, \hbar}$ A. Hafner ${ }^{72, \uparrow}$ B. Hamilton, ${ }^{75, \dagger}$ T. Hara, ${ }^{40,34, \dagger}$ P. F. Harrison, ${ }^{138, \dagger}$ C. Hast, ${ }^{113, \dagger}$ K. Hayasaka, ${ }^{86, \ddagger}$ H. Hayashii, ${ }^{88, \ddagger}$ C. Hearty, ${ }^{10, \dagger}$ X. H. He, ${ }^{101, \$}$
 D. E. Hutchcroft, ${ }^{65, \dagger}$ T. Iijima, ${ }^{86,85, \ddagger}$ G. Inguglia, ${ }^{25, \ddagger}$ W. R. Innes, ${ }^{113, \dagger}$ A. Ishikawa, ${ }^{128,{ }^{1 / 7}}$ R. Itoh,,${ }^{40,34, \hbar}$ Y. Iwasaki, ${ }^{40, \ddagger}$ J. M. Izen, ${ }^{126, \dagger}$ I. Jaegle, ${ }^{38, \ddagger}$ A. Jawahery, ${ }^{75, \dagger}$ C. P. Jessop, ${ }^{95, \dagger}$ D. Joffe, ${ }^{56,{ }^{5,7}}$ K. K. Joo, ${ }^{21, \ddagger}$ T. Julius, ${ }^{79, \ddagger}$ K. H. Kang, ${ }^{61, \ddagger}$ R. Kass, ${ }^{96, \dagger}$ T. Kawasaki, ${ }^{94, \ddagger}$ L. T. Kerth, ${ }^{7, \dagger}$ A. Khan, ${ }^{11,{ }^{1,7}}$ C. Kiesling, ${ }^{77, \ddagger}$ D. Y. Kim, ${ }^{112, \ddagger}$ J. B. Kim, ${ }^{60, \ddagger}$ J. H. Kim, ${ }^{59, \#}$ K. T. Kim, ${ }^{60, \ddagger}$ P. Kim, ${ }^{113, \dagger}$ S. H. Kim, ${ }^{37, \ddagger}$ Y. J. Kim, ${ }^{59, \ddagger}$ G. J. King, ${ }^{136, \dagger}$ K. Kinoshita, ${ }^{22, \ddagger}$ B. R. Ko, ${ }^{60, \ddagger}$ H. Koch, ${ }^{8, \dagger}$ P. Kodyš, ${ }^{20, \ddagger}$ Yu. G. Kolomensky, ${ }^{7, \dagger}$ S. Korpar, ${ }^{74,51, \hbar}$ D. Kovalskyi, ${ }^{17, \dagger}$ R. Kowalewski, ${ }^{136, \dagger}$ E. A. Kravchenko, ${ }^{12,13, \uparrow}$ P. Križan,,${ }^{66,51, \ddagger}$ P. Krokovny, ${ }^{12,13, \ddagger}$ T. Kuhr, ${ }^{70, \ddagger}$ R. Kumar, ${ }^{106, \ddagger}$ A. Kuzmin, ${ }^{12,13, \ddagger}$ Y.-J. Kwon, ${ }^{142, \ddagger}$ H. M. Lacker, ${ }^{41, \dagger}$ G. D. Lafferty, ${ }^{73, \uparrow}$ L. Lanceri ${ }^{134 a, 134 b, \dagger}$ D. J. Lange, ${ }^{64, \dagger}$ A. J. Lankford, ${ }^{15, \dagger}$ T. E. Latham, ${ }^{138, \dagger}$ T. Leddig, ${ }^{108, \dagger}$ F. Le Diberder, ${ }^{62, \dagger}$ D. H. Lee, ${ }^{60, \$}$ I. S. Lee, ${ }^{37, \ddagger}$ M. J. Lee, ${ }^{7, \dagger}$ J. P. Lees, ${ }^{1, \dagger}$ D. W. G. S. Leith, ${ }^{113, \dagger}$ Ph. Leruste, ${ }^{100, \dagger}$ M. J. Lewczuk, ${ }^{136, \dagger}$ P. Lewis, ${ }^{38, \hbar}$ J. Libby, ${ }^{44, \$}$ W. S. Lockman, ${ }^{18, \dagger}$ O. Long, ${ }^{16, \dagger}$ D. Lopes Pegna, ${ }^{105, \dagger}$ J. M. LoSecco, ${ }^{95, \dagger}$ X. C. Lou, ${ }^{126, \dagger}$ T. Lueck, ${ }^{136, \dagger}$ S. Luitz, ${ }^{13, \dagger}$ P. Lukin, ${ }^{12,13,7}$ E. Luppi, ${ }^{29 a, 29 b, \dagger}$ A. Lusiani, ${ }^{103 a, 103 c, \dagger}$ V. Luth,,${ }^{113, \dagger}$ A. M. Lutz, ${ }^{62, \dagger}$ G. Lynch, ${ }^{7, \dagger}$ D. B. MacFarlane, ${ }^{113, \uparrow}$ B. Malaescu ${ }^{62, *, \dagger}$ U. Mallik, ${ }^{49, \dagger}$ E. Manoni, ${ }^{102 a, \dagger}$ G. Marchiori, ${ }^{100, \dagger}$ M. Margoni, ${ }^{99 a, 99 b, \dagger}$ S. Martellotti, ${ }^{30, \dagger}$ F. Martinez-Vidal, ${ }^{135, \dagger}$ M. Masuda, ${ }^{129, *}$ T. S. Mattison, ${ }^{10, \dagger}$ D. Matvienko, ${ }^{12,13, \ddagger}$ J. A. McKenna, ${ }^{10, \dagger}$ B. T. Meadows, ${ }^{22, \dagger}$ K. Miyabayashi, ${ }^{88,{ }^{\ddagger}}$ T. S. Miyashita, ${ }^{19, \dagger}$ H. Miyata, ${ }^{94, \%}$ R. Mizuk, ${ }^{48,83, \ddagger}$ G. B. Mohanty, ${ }^{121, \ddagger}$ A. Moll, ${ }^{77,122, \#}$

 B. Oberhof, ${ }^{103 a, 103 b, \uparrow}$ J. Ocariz, ${ }^{100, \dagger}$ S. Ogawa, ${ }^{127, \hbar}$ S. Okuno, ${ }^{54, \ddagger}$ E. O. Olaiya, ${ }^{109, \uparrow}$ J. Olsen, ${ }^{105, \uparrow}$ P. Ongmongkolkul,,${ }^{19, \uparrow}$ G. Onorato, ${ }^{87,87 b, \dagger}$ A. P. Onuchin, ${ }^{12-14, \dagger}$ Y. Onuki, ${ }^{130, \ddagger}$ W. Ostrowicz, ${ }^{93,7}$ A. Oyanguren, ${ }^{135, \dagger}$ G. Pakhlova ${ }^{84,48, \ddagger}$ P. Pakhlov, ${ }^{48,83, \hbar}$ A. Palano, ${ }^{3 a, 3 b, \dagger}$ B. Pal ${ }^{22, \hbar}$ F. Palombo, ${ }^{80,80 b, \dagger}$ Y. Pan, ${ }^{140, \dagger}$ W. Panduro Vazquez, ${ }^{18, \dagger}$ E. Paoloni, ${ }^{103 a, 103 b, \uparrow}$ C. W. Park, ${ }^{118,{ }^{7}}$ H. Park, ${ }^{61, *}$ S. Passaggio, ${ }^{31 a, \uparrow}$ P. M. Patel, ${ }^{78, \uparrow,{ }^{*}}$ C. Patrignani, ${ }^{31 a, 31 b,{ }^{\prime}}$ P. Patteri, ${ }^{30,{ }^{30}}$ D. J. Payne ${ }^{65, \uparrow}$ T. K. Pedlar, ${ }^{71, \hbar}$ D. R. Peimer, ${ }^{123, \dagger}$ I. M. Peruzzi, ${ }^{30, \dagger}$ L. Pesántez, ${ }^{9, \hbar}$ R. Pestotnik, ${ }^{51, \ddagger}$ M. Petrič, ${ }^{51, \ddagger}$ M. Piccolo, ${ }^{30, \uparrow}$
L. Piemontese, ${ }^{29 a, \dagger}$ L. E. Piilonen, ${ }^{137, \dagger}$ A. Pilloni, ${ }^{107 a, 107 b, \dagger}$ G. Piredda, ${ }^{107 a, \dagger}$ S. Playfer, ${ }^{28, \dagger}$ V. Poireau, ${ }^{1, \dagger}$ F. C. Porter, ${ }^{19, \dagger}$ M. Posocco, ${ }^{99 a, \dagger}$ V. Prasad, ${ }^{35, \dagger}$ S. Prell, ${ }^{50, \dagger}$ R. Prepost, ${ }^{140, \dagger}$ E. M. T. Puccio, ${ }^{116, \dagger}$ T. Pulliam, ${ }^{113, \dagger}$ M. V. Purohit, ${ }^{114, \dagger}$ B. G. Pushpawela, ${ }^{22, \dagger}$ M. Rama, ${ }^{103 a, \dagger}$ A. Randle-Conde, ${ }^{115, \dagger}$ B. N. Ratcliff, ${ }^{113, \dagger}$ G. Raven, ${ }^{90, \dagger}$ E. Ribežl, ${ }^{51, \dagger}$ J. D. Richman, ${ }^{17, \dagger}$ J. L. Ritchie, ${ }^{125, \dagger}$ G. Rizzo, ${ }^{103 a, 103 b, \dagger}$ D. A. Roberts, ${ }^{75, \dagger}$ S. H. Robertson, ${ }^{78, \dagger}$ M. Röhrken, ${ }^{19,55, \dagger, \#}$ J. M. Roney, ${ }^{136, \dagger}$ A. Roodman, ${ }^{113, \dagger}$ A. Rossi, ${ }^{102 a, \dagger}$ A. Rostomyan, ${ }^{25, \dagger}$ M. Rotondo, ${ }^{99 a, \dagger}$ P. Roudeau, ${ }^{62, \dagger}$ R. Sacco, ${ }^{67, \uparrow}$ Y. Sakai, ${ }^{40,34, \hbar}$ S. Sandilya, ${ }^{121, \ddagger}$ L. Santelj, ${ }^{40, \ddagger}$ V. Santoro, ${ }^{29 a, \dagger}$ T. Sanuki, ${ }^{128, \#}$ Y. Sato, ${ }^{85, \ddagger}$ V. Savinov, ${ }^{104, \ddagger}$ R. H. Schindler, ${ }^{13, \uparrow}$ O. Schneider, ${ }^{63, \hbar}$ G. Schnell, ${ }^{4,42, \ddagger}$ T. Schroeder, ${ }^{8, \dagger}$ K. R. Schubert, ${ }^{72, \dagger}$ B. A. Schumm, ${ }^{18, \dagger}$ C. Schwanda, ${ }^{46, \ddagger}$ A. J. Schwartz, ${ }^{22, \#}$ R. F. Schwitters, ${ }^{125, \dagger}$ C. Sciacca, ${ }^{87 \mathrm{a}, 87 \mathrm{~b}, \dagger}$ A. Seiden, ${ }^{18, \dagger}$ S. J. Sekula, ${ }^{115, \dagger}$ K. Senyo, ${ }^{141, \dagger}$ O. Seon, ${ }^{85, \#}$ S. I. Serednyakov, ${ }^{12,13, \uparrow}$ M. E. Sevior, ${ }^{79 \%}$ M. Shapkin, ${ }^{47, \ddagger}$ V. Shebalin, ${ }^{12,13, \ddagger}$ C. P. Shen, ${ }^{5, \%}$ T.-A. Shibata, ${ }^{131, \ddagger}$ J.-G. Shiu, ${ }^{92, \#}$ M. Simard, ${ }^{82, \uparrow}$
G. Simi, ${ }^{99 a, 99 b, \dagger}$ F. Simon, ${ }^{77,122, \dagger}$ F. Simonetto, ${ }^{99 a, 99 b, \dagger}$ Yu. I. Skovpen, ${ }^{12,13, \dagger}$ A. J. S. Smith, ${ }^{105, \dagger}$ J. G. Smith, ${ }^{23, \dagger}$ A. Snyder, ${ }^{113, \dagger}$ R. Y. So, ${ }^{10, \dagger}$ R. J. Sobie, ${ }^{136, \dagger}$ A. Soffer, ${ }^{123, \dagger}$ Y.-S. Sohn, ${ }^{142, \dagger}$ M. D. Sokoloff, ${ }^{22, \dagger}$ A. Sokolov, ${ }^{47, \dagger}$ E. P. Solodov, ${ }^{12,13, \dagger}$ E. Solovieva, ${ }^{48, \ddagger}$ B. Spaan, ${ }^{26, \dagger}$ S. M. Spanier, ${ }^{124, \dagger}$ M. Starič, ${ }^{51, \dagger}$ A. Stocchi, ${ }^{62, \dagger}$ R. Stroili, ${ }^{99 a, 99 b, \dagger}$ B. Stugu, ${ }^{6, \dagger}$ D. Su, ${ }^{113, \uparrow}$ M. K. Sullivan, ${ }^{113, \dagger}$ M. Sumihama, ${ }^{33, \hbar}$ K. Sumisawa, ${ }^{40,34, \#}$ T. Sumiyoshi, ${ }^{132, \#}$ D. J. Summers, ${ }^{81,{ }^{\dagger}}$ L. Sun, ${ }^{22, \dagger}$ U. Tamponi, ${ }^{133 \mathrm{a}, 133 \mathrm{~b}, \dagger}$ P. Taras, ${ }^{82, \dagger}$ N. Tasneem, ${ }^{136, \dagger}$ Y. Teramoto, ${ }^{97, \dagger}$ V. Tisserand, ${ }^{1, \dagger}$ K. Yu. Todyshev, ${ }^{12,13, \dagger}$ W. H. Toki, ${ }^{24, \dagger}$ C. Touramanis, ${ }^{65, \dagger}$ K. Trabelsi, ${ }^{40,34, \#}$ T. Tsuboyama, ${ }^{40, \ddagger}$ M. Uchida, ${ }^{131, \%}$ T. Uglov, ${ }^{48,84, \ddagger}$ Y. Unno, ${ }^{37, \hbar}$ S. Uno, ${ }^{40,34, \ddagger}$ Y. Usov, ${ }^{12,13, \ddagger}$ U. Uwer, ${ }^{39, \dagger}$ S. E. Vahsen, ${ }^{38, \ddagger}$ C. Van Hulse, ${ }^{4, \ddagger}$ P. Vanhoefer, ${ }^{77, \ddagger}$ G. Varner, ${ }^{38, \ddagger}$ G. Vasseur, ${ }^{110, \dagger}$ J. Va’vra, ${ }^{13, \uparrow}$ M. Verderi, ${ }^{27, \dagger}$ A. Vinokurova, ${ }^{12,13, \ddagger}$ L. Vitale, ${ }^{134 a, 134 b, \dagger}$ V. Vorobyev, ${ }^{12,13, \ddagger}$ C. Voß, ${ }^{108, \dagger}$ M. N. Wagner, ${ }^{32, \#}$ S. R. Wagner, ${ }^{23, \uparrow}$ R. Waldi, ${ }^{108, \dagger}$ J. J. Walsh, ${ }^{103 a, \dagger}$ C. H. Wang, ${ }^{91, \#}$ M.-Z. Wang, ${ }^{92, \hbar}$ P. Wang, ${ }^{45, \ddagger}$ Y. Watanabe, ${ }^{54, \ddagger}$ C. A. West, ${ }^{17, \dagger}$ K. M. Williams, ${ }^{137, \ddagger}$ F. F. Wilson, ${ }^{109, \dagger}$ J. R. Wilson, ${ }^{114, \dagger}$ W. J. Wisniewski, ${ }^{113, \dagger}$ E. Won, ${ }^{60, \ddagger}$ G. Wormser, ${ }^{62, \dagger}$ D. M. Wright, ${ }^{64, \dagger}$ S. L. Wu, ${ }^{140, \dagger}$ H. W. Wulsin, ${ }^{113, \dagger}$ H. Yamamoto, ${ }^{128, 巿}$ J. Yamaoka, ${ }^{98, \ddagger}$ S. Yashchenko, ${ }^{25, \ddagger}$ C. Z. Yuan, ${ }^{45, \ddagger}$ Y. Yusa, ${ }^{94, \ddagger}$ A. Zallo, ${ }^{30, \dagger}$ C. C. Zhang, ${ }^{45, \ddagger}$ Z. P. Zhang, ${ }^{111, \ddagger}$ V. Zhilich, ${ }^{12,13, \ddagger}$ V. Zhulanov, ${ }^{12,13, \ddagger}$ and A. Zupanc ${ }^{51, \ddagger}$
$\left(B_{A B A R}\right.$ Collaboration) ${ }^{\dagger}$
(Belle Collaboration) ${ }^{\ddagger}$

${ }^{1}$ Laboratoire d'Annecy-le-Vieux de Physique des Particules (LAPP), Université de Savoie, CNRS/IN2P3, F-74941 Annecy-Le-Vieux, France<br>${ }^{2}$ Universitat de Barcelona, Facultat de Fisica, Departament ECM, E-08028 Barcelona, Spain<br>${ }^{33}$ INFN Sezione di Bari, I-70126 Bari, Italy<br>${ }^{3 \mathrm{~b}}$ Dipartimento di Fisica, Università di Bari, I-70126 Bari, Italy<br>${ }^{4}$ University of the Basque Country UPV/EHU, 48080 Bilbao, Spain<br>${ }^{5}$ Beihang University, Beijing 100191, China<br>${ }^{6}$ University of Bergen, Institute of Physics, N-5007 Bergen, Norway<br>${ }^{7}$ Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA<br>${ }^{8}$ Ruhr Universität Bochum, Institut für Experimentalphysik 1, D-44780 Bochum, Germany<br>${ }^{9}$ University of Bonn, 53115 Bonn, Germany<br>${ }^{10}$ University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada<br>${ }^{11}$ Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom<br>${ }^{12}$ Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090, Russian Federation<br>${ }^{13}$ Novosibirsk State University, Novosibirsk 630090, Russian Federation<br>${ }^{14}$ Novosibirsk State Technical University, Novosibirsk 630092, Russian Federation<br>${ }^{15}$ University of California at Irvine, Irvine, California 92697, USA<br>${ }^{16}$ University of California at Riverside, Riverside, California 92521, USA<br>${ }^{17}$ University of California at Santa Barbara, Santa Barbara, California 93106, USA<br>${ }^{18}$ University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, California 95064, USA<br>${ }^{19}$ California Institute of Technology, Pasadena, California 91125, USA<br>${ }^{20}$ Faculty of Mathematics and Physics, Charles University, 12116 Prague, Czech Republic<br>${ }^{21}$ Chonnam National University, Kwangju 660-701, South Korea<br>${ }^{22}$ University of Cincinnati, Cincinnati, Ohio 45221, USA<br>${ }^{23}$ University of Colorado, Boulder, Colorado 80309, USA<br>${ }^{24}$ Colorado State University, Fort Collins, Colorado 80523, USA<br>${ }^{25}$ Deutsches Elektronen-Synchrotron, 22607 Hamburg, Germany<br>${ }^{26}$ Technische Universität Dortmund, Fakultät Physik, D-44221 Dortmund, Germany<br>${ }^{27}$ Laboratoire Leprince-Ringuet, Ecole Polytechnique, CNRS/IN2P3, F-91128 Palaiseau, France<br>${ }^{28}$ University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom

${ }^{29 a}$ INFN Sezione di Ferrara, I-44122 Ferrara, Italy<br>${ }^{29 b}$ Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, I-44122 Ferrara, Italy<br>${ }^{30}$ INFN Laboratori Nazionali di Frascati, I-00044 Frascati, Italy<br>${ }^{31 \mathrm{a}}$ INFN Sezione di Genova, I-16146 Genova, Italy<br>${ }^{31 \mathrm{~b}}$ Dipartimento di Fisica, Università di Genova, I-16146 Genova, Italy<br>${ }^{32}$ Justus-Liebig-Universität Gießen, 35392 Gießen, Germany<br>${ }^{33}$ Gifu University, Gifu 501-1193, Japan<br>${ }^{34}$ SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193, Japan<br>${ }^{35}$ Indian Institute of Technology Guwahati, Guwahati, Assam 781 039, India<br>${ }^{36}$ Gyeongsang National University, Chinju 660-701, South Korea<br>${ }^{37}$ Hanyang University, Seoul 133-791, South Korea<br>${ }^{38}$ University of Hawaii, Honolulu, Hawaii 96822, USA<br>${ }^{39}$ Universität Heidelberg, Physikalisches Institut, D-69120 Heidelberg, Germany<br>${ }^{40}$ High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801, Japan<br>${ }^{41}$ Humboldt-Universität zu Berlin, Institut für Physik, D-12489 Berlin, Germany<br>${ }^{42}$ IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain<br>${ }^{43}$ Indian Institute of Technology Bhubaneswar, Satya Nagar 751007, India<br>${ }^{44}$ Indian Institute of Technology Madras, Chennai 600036, India<br>${ }^{45}$ Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China<br>${ }^{46}$ Institute of High Energy Physics, Vienna 1050, Austria<br>${ }^{47}$ Institute for High Energy Physics, Protvino 142281, Russian Federation<br>${ }^{48}$ Institute for Theoretical and Experimental Physics, Moscow 117218, Russian Federation<br>${ }^{49}$ University of Iowa, Iowa City, Iowa 52242, USA<br>${ }^{50}$ Iowa State University, Ames, Iowa 50011-3160, USA<br>${ }^{51}$ J. Stefan Institute, 1000 Ljubljana, Slovenia<br>${ }^{52}$ Physics Department, Jazan University, Jazan 22822, Kingdom of Saudi Arabia<br>${ }^{53}$ Johns Hopkins University, Baltimore, Maryland 21218, USA<br>${ }^{54}$ Kanagawa University, Yokohama 221-8686, Japan<br>${ }^{55}$ Institut für Experimentelle Kernphysik, Karlsruher Institut für Technologie, 76131 Karlsruhe, Germany<br>${ }^{56}$ Kennesaw State University, Kennesaw, Georgia 30144, USA<br>${ }^{57}$ King Abdulaziz City for Science and Technology, Riyadh 11442, Kingdom of Saudi Arabia<br>${ }^{58}$ Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Kingdom of Saudi Arabia<br>${ }^{59}$ Korea Institute of Science and Technology Information, Daejeon 305-806, South Korea<br>${ }^{60}$ Korea University, Seoul 136-713, South Korea<br>${ }^{61}$ Kyungpook National University, Daegu 702-701, South Korea<br>${ }^{62}$ Laboratoire de l'Accélérateur Linéaire, IN2P3/CNRS et Université Paris-Sud 11, Centre Scientifique d'Orsay, F-91898 Orsay Cedex, France<br>${ }^{63}$ École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland<br>${ }^{64}$ Lawrence Livermore National Laboratory, Livermore, California 94550, USA<br>${ }^{65}$ University of Liverpool, Liverpool L69 7ZE, United Kingdom<br>${ }^{66}$ Faculty of Mathematics and Physics, University of Ljubljana, 1000 Ljubljana, Slovenia<br>${ }^{67}$ Queen Mary, University of London, London E1 4NS, United Kingdom<br>${ }^{68}$ University of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom<br>${ }^{69}$ University of Louisville, Louisville, Kentucky 40292, USA<br>${ }^{70}$ Ludwig Maximilians University, 80539 Munich, Germany<br>${ }^{71}$ Luther College, Decorah, Iowa 52101, USA<br>${ }^{72}$ Johannes Gutenberg-Universität Mainz, Institut für Kernphysik, D-55099 Mainz, Germany<br>${ }^{73}$ University of Manchester, Manchester M13 9PL, United Kingdom<br>${ }^{74}$ University of Maribor, 2000 Maribor, Slovenia<br>${ }^{75}$ University of Maryland, College Park, Maryland 20742, USA<br>${ }^{76}$ Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA<br>${ }_{78}^{77}$ Max-Planck-Institut für Physik, 80805 München, Germany<br>${ }^{78}$ McGill University, Montréal, Québec H3A 2T8, Canada<br>${ }^{79}$ School of Physics, University of Melbourne, Victoria 3010, Australia<br>${ }^{80 \mathrm{a}}$ INFN Sezione di Milano, I-20133 Milano, Italy<br>${ }^{80 \mathrm{~b}}$ Dipartimento di Fisica, Università di Milano, I-20133 Milano, Italy<br>${ }^{81}$ University of Mississippi, University, Mississippi 38677, USA<br>${ }^{82}$ Université de Montréal, Physique des Particules, Montréal, Québec H3C 3J7, Canada<br>${ }^{83}$ Moscow Physical Engineering Institute, Moscow 115409, Russian Federation<br>${ }^{84}$ Moscow Institute of Physics and Technology, Moscow Region 141700, Russian Federation

${ }^{85}$ Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan<br>${ }^{86}$ Kobayashi-Maskawa Institute, Nagoya University, Nagoya 464-8602, Japan<br>${ }^{87 \mathrm{a}}$ INFN Sezione di Napoli, I-80126 Napoli, Italy<br>${ }^{87 \mathrm{~b}}$ Dipartimento di Scienze Fisiche, Università di Napoli Federico II, I-80126 Napoli, Italy<br>${ }^{88}$ Nara Women's University, Nara 630-8506, Japan<br>${ }^{89}$ National Central University, Chung-li 32054, Taiwan<br>${ }^{90}$ NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, Netherlands<br>${ }^{91}$ National United University, Miao Li 36003, Taiwan<br>${ }^{92}$ Department of Physics, National Taiwan University, Taipei 10617, Taiwan<br>${ }^{93}$ H. Niewodniczanski Institute of Nuclear Physics, Krakow 31-342, Poland<br>${ }^{94}$ Niigata University, Niigata 950-2181, Japan<br>${ }^{95}$ University of Notre Dame, Notre Dame, Indiana 46556, USA<br>${ }^{96}$ Ohio State University, Columbus, Ohio 43210, USA<br>${ }^{97}$ Osaka City University, Osaka 558-8585, Japan<br>${ }^{98}$ Pacific Northwest National Laboratory, Richland, Washington 99352, USA<br>${ }^{99 \mathrm{a}}$ INFN Sezione di Padova, I-35131 Padova, Italy<br>${ }^{99 \mathrm{~b}}$ Dipartimento di Fisica, Università di Padova, I-35131 Padova, Italy<br>${ }^{100}$ Laboratoire de Physique Nucléaire et de Hautes Energies, IN2P3/CNRS, Université Pierre et Marie Curie-Paris6,<br>Université Denis Diderot-Paris7, F-75252 Paris, France<br>${ }^{101}$ Peking University, Beijing 100871, China<br>${ }^{102 \mathrm{a}}$ INFN Sezione di Perugia, I-06123 Perugia, Italy<br>${ }^{102 \mathrm{~b}}$ Dipartimento di Fisica, Università di Perugia, I-06123 Perugia, Italy<br>${ }^{103 a}$ INFN Sezione di Pisa, I-56127 Pisa, Italy<br>${ }^{103 \mathrm{~b}}$ Dipartimento di Fisica, Università di Pisa, I-56127 Pisa, Italy<br>${ }^{103 \mathrm{c}}$ Scuola Normale Superiore di Pisa, I-56127 Pisa, Italy<br>${ }^{104}$ University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA<br>${ }^{105}$ Princeton University, Princeton, New Jersey 08544, USA<br>${ }^{106}$ Punjab Agricultural University, Ludhiana 141004, India ${ }^{107 \mathrm{a}}$ INFN Sezione di Roma, I-00185 Roma, Italy<br>${ }^{107 b}$ Dipartimento di Fisica, Università di Roma La Sapienza, I-00185 Roma, Italy<br>${ }^{108}$ Universität Rostock, D-18051 Rostock, Germany<br>${ }^{109}$ Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX, United Kingdom<br>${ }^{110}$ CEA, Irfu, SPP, Centre de Saclay, F-91191 Gif-sur-Yvette, France<br>${ }^{111}$ University of Science and Technology of China, Hefei 230026, China<br>${ }^{112}$ Soongsil University, Seoul 156-743, South Korea<br>${ }^{113}$ SLAC National Accelerator Laboratory, Stanford, California 94309, USA<br>${ }^{114}$ University of South Carolina, Columbia, South Carolina 29208, USA<br>${ }^{115}$ Southern Methodist University, Dallas, Texas 75275, USA<br>${ }^{116}$ Stanford University, Stanford, California 94305-4060, USA<br>${ }^{117}$ State University of New York, Albany, New York 12222, USA<br>${ }^{118}$ Sungkyunkwan University, Suwon 440-746, South Korea<br>${ }^{119}$ School of Physics, University of Sydney, Sydney, NSW 2006, Australia<br>${ }^{120}$ Department of Physics, Faculty of Science, University of Tabuk, Tabuk 71451, Kingdom of Saudi Arabia<br>${ }^{121}$ Tata Institute of Fundamental Research, Mumbai 400005, India<br>${ }^{122}$ Excellence Cluster Universe, Technische Universität München, 85748 Garching, Germany<br>${ }^{123}$ Tel Aviv University, School of Physics and Astronomy, Tel Aviv, 69978, Israel<br>${ }^{124}$ University of Tennessee, Knoxville, Tennessee 37996, USA<br>${ }^{125}$ University of Texas at Austin, Austin, Texas 78712, USA<br>${ }^{126}$ University of Texas at Dallas, Richardson, Texas 75083, USA<br>${ }^{127}$ Toho University, Funabashi 274-8510, Japan<br>${ }^{128}$ Tohoku University, Sendai 980-8578, Japan<br>${ }^{129}$ Earthquake Research Institute, University of Tokyo, Tokyo 113-0032, Japan<br>${ }^{130}$ Department of Physics, University of Tokyo, Tokyo 113-0033, Japan<br>${ }^{131}$ Tokyo Institute of Technology, Tokyo 152-8550, Japan<br>${ }^{132}$ Tokyo Metropolitan University, Tokyo 192-0397, Japan<br>${ }^{133 \mathrm{a}}$ INFN Sezione di Torino, I-10125 Torino, Italy<br>${ }^{133 \mathrm{~b}}$ Dipartimento di Fisica, Università di Torino, I-10125 Torino, Italy<br>${ }^{134 \mathrm{a}}$ INFN Sezione di Trieste, I-34127 Trieste, Italy<br>${ }^{134 \mathrm{~b}}$ Dipartimento di Fisica, Università di Trieste, I-34127 Trieste, Italy<br>${ }^{135}$ IFIC, Universitat de Valencia-CSIC, E-46071 Valencia, Spain

${ }^{136}$ University of Victoria, Victoria, British Columbia V8W 3P6, Canada<br>${ }^{137}$ CNP, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA<br>${ }^{138}$ Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom<br>${ }^{139}$ Wayne State University, Detroit, Michigan 48202, USA<br>${ }^{140}$ University of Wisconsin, Madison, Wisconsin 53706, USA<br>${ }^{141}$ Yamagata University, Yamagata 990-8560, Japan<br>${ }^{142}$ Yonsei University, Seoul 120-749, South Korea<br>(Received 14 May 2015; published 16 September 2015)

We report a measurement of the time-dependent $C P$ asymmetry of $\bar{B}^{0} \rightarrow D_{C P}^{(*)} h^{0}$ decays, where the light neutral hadron $h^{0}$ is a $\pi^{0}, \eta$, or $\omega$ meson, and the neutral $D$ meson is reconstructed in the $C P$ eigenstates $K^{+} K^{-}, K_{S}^{0} \pi^{0}$, or $K_{S}^{0} \omega$. The measurement is performed combining the final data samples collected at the $\Upsilon(4 S)$ resonance by the BABAR and Belle experiments at the asymmetric-energy $B$ factories PEP-II at SLAC and KEKB at KEK, respectively. The data samples contain $(471 \pm 3) \times 10^{6} B \bar{B}$ pairs recorded by the $B A B A R$ detector and $(772 \pm 11) \times 10^{6} B \bar{B}$ pairs recorded by the Belle detector. We measure the $C P$ asymmetry parameters $-\eta_{f} \mathcal{S}=+0.66 \pm 0.10$ (stat) $\pm 0.06$ (syst) and $\mathcal{C}=-0.02 \pm 0.07$ (stat) $\pm 0.03$ (syst). These results correspond to the first observation of $C P$ violation in $\bar{B}^{0} \rightarrow D_{C P}^{(*)} h^{0}$ decays. The hypothesis of no mixing-induced $C P$ violation is excluded in these decays at the level of 5.4 standard deviations.

DOI: 10.1103/PhysRevLett.115.121604
PACS numbers: 13.25.Hw, 11.30.Er, 12.15.Hh

In the standard model (SM) of electroweak interactions, $C P$ violation arises from an irreducible complex phase in the three-family Cabibbo-Kobayashi-Maskawa (CKM) quark-mixing matrix [1]. The $B A B A R$ and Belle experiments have established $C P$ violating effects in the $B$ meson system [2-5]. Both experiments use their measurements of the mixing-induced $C P$ violation in $b \rightarrow c \bar{c} s$ transitions [6,7] to determine precisely the parameter $\sin (2 \beta) \equiv \sin \left(2 \phi_{1}\right)$ ( $B A B A R$ uses $\beta$ and Belle uses $\phi_{1}$, hereinafter $\beta$ is used). The angle $\beta$ is defined as $\arg \left[-V_{c d} V_{c b}^{*} / V_{t d} V_{t b}^{*}\right]$, where $V_{i j}$ is the CKM matrix element of quarks $i, j$.

A complementary and theoretically clean approach to access $\beta$ is provided by $\bar{B}^{0} \rightarrow D^{(*) 0} h^{0}$ decays, where $h^{0} \in$ $\left\{\pi^{0}, \eta, \omega\right\}$ denotes a light neutral hadron. These decays are dominated by CKM-favored $b \rightarrow c \bar{u} d$ tree amplitudes. CKM-disfavored $b \rightarrow u \bar{c} d$ amplitudes carrying different weak phases also contribute to the decays, but are suppressed by $V_{u b} V_{c d}^{*} / V_{c b} V_{u d}^{*} \approx 0.02$ relative to the leading amplitudes. An interference between the decay amplitudes without and with $B^{0}-\bar{B}^{0}$ mixing emerges if the neutral $D$ meson decays to a $C P$ eigenstate $D_{C P}$. Neglecting the suppressed amplitudes, the time evolution of $\bar{B}^{0} \rightarrow D_{C P}^{(*)} h^{0}$ decays is governed by $\beta$ [8]. Because only tree-level amplitudes contribute to $\bar{B}^{0} \rightarrow D^{(*) 0} h^{0}$ decays, these decays are not sensitive to most models of physics beyond the standard model (BSM). However, the measurement of the time-dependent $C P$ violation enables testing of the measurements of $b \rightarrow c \bar{c} s$ transitions [6,7] and provides a SM reference for the BSM searches in the mixing-induced $C P$ violation of $b \rightarrow s$ penguin-mediated $B$ meson decays [9-12]. Any sizable deviation in the $C P$ asymmetry of $\bar{B}^{0} \rightarrow D_{C P}^{(*)} h^{0}$ decays from processes involving $b \rightarrow c \bar{c} s$ or penguin-mediated $b \rightarrow s$ transitions would point to BSM. Such deviations could, for example, be caused by
unobserved heavy particles contributing to loop diagrams in $b \rightarrow c \bar{c} s$ or $b \rightarrow s$ penguin transitions [13].

An experimental difficulty in the use of $\bar{B}^{0} \rightarrow D_{C P}^{(*)} h^{0}$ decays arises from low $B$ and $D$ meson branching fractions $\left[\mathcal{O}\left(10^{-4}\right)\right.$ and $\mathcal{O}\left(\leq 10^{-2}\right)$, respectively] and low reconstruction efficiencies. Previous measurements performed separately by the $B A B A R$ and Belle Collaborations were not able to establish $C P$ violation in these or related decays [14-16].

In this Letter, we present a measurement of the timedependent $C P$ violation in $\bar{B}^{0} \rightarrow D_{C P}^{*} h^{0}$ decays. For the first time, we combine the large final data samples collected by the BABAR and Belle experiments. This new approach enables time-dependent $C P$ violation measurements in the neutral $B$ meson system with unprecedented sensitivity.

The time-dependent rate of a neutral $B$ meson decaying to a $C P$ eigenstate is given by

$$
\begin{align*}
g(\Delta t)= & \frac{e^{-|\Delta t| / \tau_{B^{0}}}}{4 \tau_{B^{0}}}\left\{1+q\left[\mathcal{S} \sin \left(\Delta m_{d} \Delta t\right)\right.\right. \\
& \left.\left.-\mathcal{C} \cos \left(\Delta m_{d} \Delta t\right)\right]\right\} \tag{1}
\end{align*}
$$

where $q=+1(-1)$ represents the $b$-flavor content when the accompanying $B$ meson is tagged as a $B^{0}\left(\bar{B}^{0}\right)$ and $\Delta t$ denotes the proper time interval between the decays of the two $B$ mesons produced in an $\Upsilon(4 S)$ decay. The neutral $B$ meson lifetime is represented by $\tau_{B^{0}}$, and the $B^{0}-\bar{B}^{0}$ mixing frequency by $\Delta m_{d}$. Neglecting the CKM-disfavored decay amplitudes in $\bar{B}^{0} \rightarrow D_{C P}^{(*)} h^{0}$ decays, the SM predicts $\mathcal{S}=-\eta_{f} \sin (2 \beta)$ and $\mathcal{C}=0$, where $\eta_{f}$ is the $C P$ eigenvalue of the final state, and $\mathcal{S}$ and $\mathcal{C}$, respectively, quantify mixing-induced and direct $C P$ violation [17].

This analysis is based on data samples collected at the $\Upsilon(4 S)$ resonance containing $(471 \pm 3) \times 10^{6} B \bar{B}$
pairs recorded with the BABAR detector at the PEP-II asymmetric-energy $e^{+} e^{-}$(3.1 on 9 GeV ) collider [18] and $(772 \pm 11) \times 10^{6} B \bar{B}$ pairs recorded with the Belle detector at the KEKB asymmetric-energy $e^{+} e^{-}(3.5$ on 8 GeV$)$ collider [19]. At $\operatorname{BABAR}$ (Belle) the $\Upsilon(4 S)$ is produced with a Lorentz boost of $\beta \gamma=0.560$ (0.425), allowing the measurement of $\Delta t$ from the displacement of the decay vertices of the two $B$ mesons. The BABAR and Belle detectors are described in Refs. [20,21].

Reconstructed tracks of charged particles are considered as kaon and pion candidates. Kaons are identified using the particle identification techniques described in Refs. [20,21]. Photons are reconstructed from energy deposits in the electromagnetic calorimeters; the energy of photon candidates is required to be at least 30 MeV . Combinations of two photons are considered as $\pi^{0}$ meson candidates if the reconstructed invariant mass is between 115 and $150 \mathrm{MeV} / c^{2}$. Candidate $\eta$ mesons are reconstructed in the decay modes $\eta \rightarrow \gamma \gamma$ and $\pi^{+} \pi^{-} \pi^{0}$. The invariant mass is required to be within $20 \mathrm{MeV} / c^{2}$ of the nominal mass [22] for $\eta \rightarrow \gamma \gamma$ candidates, and within $10 \mathrm{MeV} / c^{2}$ for $\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$ candidates. For each photon in the $\eta \rightarrow \gamma \gamma$ decay mode a minimal energy of 50 MeV is required.

For $\omega$ mesons the decay mode $\omega \rightarrow \pi^{+} \pi^{-} \pi^{0}$ is reconstructed with invariant mass required to be within $15 \mathrm{MeV} / c^{2}$ of the nominal mass [22]. Neutral kaons are reconstructed in the decay mode $K_{S}^{0} \rightarrow \pi^{+} \pi^{-}$, with invariant mass required to be within $15 \mathrm{MeV} / c^{2}$ of the nominal mass [22]. The requirements exploiting the $K_{S}^{0}$ decay vertex displacement from the interaction point (IP) described in Refs. [15,23] are applied. Neutral $D$ mesons are reconstructed in the decay modes to $C P$ eigenstates $D_{C P} \rightarrow K^{+} K^{-}, K_{S}^{0} \pi^{0}$, and $K_{S}^{0} \omega$. The invariant mass is required to be within $12 \mathrm{MeV} / c^{2}$ of the nominal mass [22] for $D_{C P} \rightarrow K^{+} K^{-}$candidates, within $25 \mathrm{MeV} / c^{2}$ for $D_{C P} \rightarrow K_{S}^{0} \pi^{0}$ candidates, and within $20 \mathrm{MeV} / c^{2}$ for $D_{C P} \rightarrow K_{S}^{0} \omega$ candidates. We reconstruct $D^{* 0}$ mesons in the decay mode $D^{* 0} \rightarrow D^{0} \pi^{0}$, and the invariant mass must be within $3 \mathrm{MeV} / \mathrm{c}^{2}$ of the nominal mass [22].

Neutral $B$ mesons are reconstructed in the $C P$-even $\left(\eta_{f}=+1\right)$ final states $\bar{B}^{0} \rightarrow D_{C P} \pi^{0}$ and $D_{C P} \eta$ (with $\left.D_{C P} \rightarrow K_{S}^{0} \pi^{0}, \quad K_{S}^{0} \omega\right), \bar{B}^{0} \rightarrow D_{C P} \omega$ (with $D_{C P} \rightarrow K_{S}^{0} \pi^{0}$ ), $\bar{B}^{0} \rightarrow D_{C P}^{*} \pi^{0}$ and $D_{C P}^{*} \eta$ (with $D_{C P} \rightarrow K^{+} K^{-}$), and in the $C P$-odd ( $\eta_{f}=-1$ ) final states $\bar{B}^{0} \rightarrow D_{C P} \pi^{0}, D_{C P} \eta, D_{C P} \omega$ (with $D_{C P} \rightarrow K^{+} K^{-}$), and $\bar{B}^{0} \rightarrow D_{C P}^{*} \pi^{0}$ and $D_{C P}^{*} \eta$ (with $D_{C P} \rightarrow K_{S}^{0} \pi^{0}$ ) [24].

Neutral $B$ mesons are selected by the beam-energyconstrained mass $M_{\mathrm{bc}} \equiv m_{\mathrm{ES}}=\sqrt{\left(E_{\text {beam }}^{*} / c^{2}\right)^{2}-\left(p_{B}^{*} / c\right)^{2}}$ (BABAR uses $m_{\mathrm{ES}}$ and Belle uses $M_{\mathrm{bc}}$, hereinafter $M_{\mathrm{bc}}$ is used) and by the energy difference $\Delta E=E_{B}^{*}-E_{\text {beam }}^{*}$, where $E_{\text {beam }}^{*}$ denotes the energy of the beam, and $p_{B}^{*}$ and $E_{B}^{*}$ are the momentum and energy of the $B$ meson candidates, evaluated in the $e^{+} e^{-}$center-of-mass (c.m.)
frame. The selected regions are $5.2 \mathrm{GeV} / c^{2}<M_{\mathrm{bc}}<$ $5.3 \mathrm{GeV} / c^{2}$ and $-100 \mathrm{MeV}<\Delta E<100 \mathrm{MeV}$, except for $\bar{B}^{0} \rightarrow D_{C P}^{(*)} \pi^{0}$ decays, where $-75 \mathrm{MeV}<\Delta E<100 \mathrm{MeV}$ is required to exclude tails from partially reconstructed $B^{-} \rightarrow D^{(*) 0} \rho^{-}$decays peaking at $\Delta E \approx-250 \mathrm{MeV}$.

In $\bar{B}^{0} \rightarrow D^{0} \omega$ and in $D^{0} \rightarrow K_{S}^{0} \omega$ decays, the $\omega$ vector mesons are polarized. The angular distribution of $\omega \rightarrow$ $\pi^{+} \pi^{-} \pi^{0}$ decays is exploited to discriminate against background. The quantity $\cos \theta_{N}$ is defined as the cosine of the angle between the neutral $B$ meson direction and the normal to the $\pi^{+} \pi^{-} \pi^{0}$ plane in the $\omega$ meson rest frame. A requirement of $\left|\cos \theta_{N}\right|>0.3$ is applied.

After applying the above selection requirements, the average multiplicity of reconstructed $\bar{B}^{0} \rightarrow D_{C P}^{(*)} h^{0}$ candidates in an event is 1.3. In case of multiple $B$ meson candidates in an event, one candidate is selected using a criterion based on the deviations of the reconstructed $D^{(*)}$ and $h^{0}$ meson masses from the nominal values. The probability for this method to select the correct signal is $82 \%$ ( $81 \%$ ) for BABAR (Belle).

In $\bar{B}^{0} \rightarrow D_{C P}^{(*)} h^{0}$ decays, the dominant source of background originates from $e^{+} e^{-} \rightarrow q \bar{q}(q \in\{u, d, s, c\})$ continuum events. This background is suppressed by using neural network (NN) multivariate classifiers that combine information characterizing the shape of an event [25]. The observables included in the NNs are the ratio $R_{2}$ of the second to the zeroth order Fox-Wolfram moment, a combination of 16 modified Fox-Wolfram moments [26], the sphericity of the event [29], and $\cos \theta_{B}^{*}$, where $\theta_{B}^{*}$ is the angle between the direction of the reconstructed $B$ meson and the beam direction in the c.m. frame. The NN selection reduces the background by $89.3 \%$ ( $91.8 \%$ ) and has a signal efficiency of $75.5 \%$ ( $74.3 \%$ ) for BABAR (Belle).

The signal yields are determined by unbinned maximum likelihood fits to the $M_{\mathrm{bc}}$ distributions. In the fits, the signal component is parametrized by a Crystal Ball function [30] and the background component is modeled by an ARGUS function [31]. The experimental $M_{\mathrm{bc}}$ distributions and fit projections are shown in Fig. 1. The signal yields are summarized in Table I.

The time-dependent $C P$ violation measurement is performed using established BABAR and Belle techniques for the vertex reconstruction, the flavor tagging, and the modeling of $\Delta t$ resolution effects (see Refs. [6,7,32-35]), and is briefly summarized below. The proper time interval $\Delta t$ is given as $\Delta z / \mathrm{c} \beta \gamma$, where $\Delta z$ is the distance between the decay vertices of the signal $B$ meson and of the accompanying $B$ meson. The $\bar{B}^{0} \rightarrow D_{C P}^{(*)} h^{0}$ signal decay vertex is reconstructed by a kinematic fit including information about the IP position. For Belle, an iterative hierarchical vertex reconstruction algorithm following a bottom-up approach starting with the final state particles is applied, while for BABAR the vertex reconstruction includes simultaneously the complete $B$ meson decay


FIG. 1. The $M_{\mathrm{bc}}$ distributions (data points with error bars) and fit projections (solid line) of $\bar{B}^{0} \rightarrow D_{C P}^{(*)} h^{0}$ decays for (a) BABAR and (b) Belle. The dashed (dotted) lines represent projections of the signal (background) fit components.
tree including all secondary decays. In the kinematic fits, the invariant masses of $\pi^{0}, \eta, \omega$, and $D_{C P}$ candidates are constrained to their nominal values [22]. The decay vertex and the $b$-flavor content of the accompanying $B$ meson are estimated from reconstructed decay products not assigned to the signal $B$ meson. The $b$-flavor content is inferred by flavor-tagging procedures described in Refs. [6,34]. The applied algorithms account for different signatures such as the presence and properties of prompt leptons, charged kaons, and pions originating from the decay of the accompanying $B$ meson, and assign a flavor and an associated probability. Selection requirements on the quality of the reconstructed decay vertices and the $\Delta t$ measurements are applied.

The $C P$ violation measurement is performed by maximizing the log-likelihood function

$$
\begin{equation*}
\ln \mathcal{L}=\sum_{i} \ln \mathcal{P}_{i}^{B A B A R}+\sum_{j} \ln \mathcal{P}_{j}^{\text {Belle }}, \tag{2}
\end{equation*}
$$

where the indices $i$ and $j$ denote the events reconstructed from $B A B A R$ and Belle data, respectively. The probability density function (PDF) describing the $\Delta t$ distribution for $B A B A R$ is defined by

$$
\begin{equation*}
\mathcal{P}^{B A B A R}=\sum_{k} f_{k} \int\left[P_{k}\left(\Delta t^{\prime}\right) R_{k}\left(\Delta t-\Delta t^{\prime}\right)\right] d\left(\Delta t^{\prime}\right) \tag{3}
\end{equation*}
$$

and for Belle by
TABLE I. Summary of $\bar{B}^{0} \rightarrow D_{C P}^{(*)} h^{0}$ signal yields.

| Decay mode | $B A B A R$ | Belle |
| :--- | :---: | :---: |
| $\bar{B}^{0} \rightarrow D_{C P} \pi^{0}$ | $241 \pm 22$ | $345 \pm 25$ |
| $\bar{B}^{0} \rightarrow D_{C P} \eta$ | $106 \pm 14$ | $148 \pm 18$ |
| $\bar{B}^{0} \rightarrow D_{C P} \omega$ | $66 \pm 10$ | $151 \pm 17$ |
| $\bar{B}^{0} \rightarrow D_{C P}^{*} \pi^{0}$ | $72 \pm 12$ | $80 \pm 14$ |
| $\bar{B}^{0} \rightarrow D_{C P}^{*} \eta$ | $39 \pm 8$ | $39 \pm 10$ |
| $\bar{B}^{0} \rightarrow D_{C P}^{(*)} h^{0}$ total | $508 \pm 31$ | $757 \pm 44$ |

$$
\begin{align*}
\mathcal{P}^{\text {Belle }}= & \left(1-f_{\mathrm{ol}}\right) \sum_{k} f_{k} \int\left[P_{k}\left(\Delta t^{\prime}\right) R_{k}\left(\Delta t-\Delta t^{\prime}\right)\right] d\left(\Delta t^{\prime}\right) \\
& +f_{\mathrm{ol}} P_{\mathrm{ol}}(\Delta t) \tag{4}
\end{align*}
$$

where the index $k$ represents the signal and background PDF components. The symbol $P_{k}$ denotes the PDF describing the proper time interval of the particular physical process, and $R_{k}$ refers to the corresponding resolution function. The fractions $f_{k}$ are evaluated on an event-byevent basis as a function of $M_{\mathrm{bc}}$. Belle treats outlier events with large $\Delta t$ using a broad Gaussian function in the PDF component $P_{\text {ol }}$ with a small fraction of $f_{\text {ol }} \approx 2 \times 10^{-4}$, while $B A B A R$ includes outlier effects in the resolution function. The signal PDF is constructed from the decay rate in Eq. (1), including the effect of incorrect flavor assignments and convolution with resolution functions to account for the finite vertex resolution. The models of the $\Delta t$ resolution effects at $B A B A R$ and Belle follow different empirical approaches and are described in detail in Refs. [6,33]. The background PDFs for $B A B A R$ and Belle are composed of the sum of a Dirac delta function to model prompt background decays and an exponential PDF for decays with effective lifetimes. The background PDF is convolved with a resolution function modeled as the sum of two Gaussian functions. The background parameters are fixed to values obtained by fits to the events in the $M_{\mathrm{bc}}<5.26 \mathrm{GeV} / c^{2}$ sidebands.

The combined $B A B A R$ and Belle measurement is performed by maximizing Eq. (2) for events in the $5.27 \mathrm{GeV} / c^{2}<M_{\mathrm{bc}}<5.29 \mathrm{GeV} / c^{2}$ signal region. The values of $\tau_{B^{0}}$ and $\Delta m_{d}$ are fixed to the world averages [22]. The free parameters in the fit are $\mathcal{S}$ and $\mathcal{C}$. The result is

$$
\begin{align*}
-\eta_{f} \mathcal{S} & =+0.66 \pm 0.10(\text { stat }) \pm 0.06(\text { syst }) \\
\mathcal{C} & =-0.02 \pm 0.07(\text { stat }) \pm 0.03(\text { syst }) \tag{5}
\end{align*}
$$

The linear correlation between $-\eta_{f} \mathcal{S}$ and $\mathcal{C}$ is $-4.9 \%$. Through comparison of the log-likelihood of the fit to the distribution from an ensemble test performed with input from the data distributions, a $p$-value of 0.46 is obtained. The flavor-tagged proper time interval distributions and projections of the fit are shown in Fig. 2.

The evaluation of the systematic uncertainties in the $C P$ violation parameters follows standard approaches of the $B A B A R$ and Belle experiments described in detail in Refs. [6,7,35]; the results are summarized in Table II. For the vertex reconstruction, the sources of systematic uncertainties include the applied constraints and selection requirements on the vertex fits of the signal $B$ meson and the accompanying $B$ meson, and on the $\Delta t$ fit range. These contributions are estimated by variations of the constraints and selection requirements. The systematic uncertainties due to the misalignment of the silicon vertex detectors are estimated by Monte Carlo (MC) simulations. For BABAR,


FIG. 2 (color online). The proper time interval distributions (data points with error bars) for $B^{0}$ tags (red) and $\bar{B}^{0}$ tags (blue) and the $C P$ asymmetries of $\bar{B}^{0} \rightarrow D_{C P}^{(*)} h^{0}$ decays for (a)-(b) $B A B A R$ and (c)-(d) Belle for candidates associated with highquality flavor tags. The solid lines show projections of the sum of signal and background components in the fit, while the hatched areas show only the background components.
the uncertainty of the $z$ scale is estimated by variations of the $z$ scale and corresponding uncertainties. For Belle, a possible $\Delta t$ bias is estimated using MC simulations. The systematic uncertainties due to the $\Delta t$ resolution functions,

TABLE II. Summary of systematic uncertainties for the timedependent $C P$ violation measurement in $\bar{B}^{0} \rightarrow D_{C P}^{(*)} h^{0}$ decays (in units of $10^{-2}$ ).

| Source | $\mathcal{S}$ | $\mathcal{C}$ |
| :--- | :---: | :---: |
| Vertex reconstruction | 1.5 | 1.4 |
| $\Delta t$ resolution functions | 2.0 | 0.4 |
| Background $\Delta t$ PDFs | 0.4 | 0.1 |
| Signal purity | 0.6 | 0.3 |
| Flavor-tagging | 0.3 | 0.3 |
| Physics parameters | 0.2 | $<0.1$ |
| Possible fit bias | 0.6 | 0.8 |
| Peaking background | 4.9 | 0.9 |
| Tag-side interference | 0.1 | 1.4 |
| Total | 5.6 | 2.5 |

the parameterization of the $\Delta t$ background PDF, the calculation of the signal purity, the flavor-tagging, and the physics parameters $\tau_{B^{0}}$ and $\Delta m_{d}$ are estimated by variation of the fixed parameters within their uncertainties. Fit biases are estimated using large samples of MCsimulated signal decays. The contribution of backgrounds that have the same final states as the reconstructed $\bar{B}^{0} \rightarrow$ $D_{C P}^{(*)} h^{0}$ decay modes and that can peak in the $M_{\mathrm{bc}}$ signal region is estimated using $D$ meson mass sidebands on data and using generic $B \bar{B}$ MC samples. These backgrounds account for less than $8 \%$ of the signal and consist mainly of flavor-specific decays such as partially reconstructed $B^{-} \rightarrow D^{(*) 0} \rho^{-}$decays. The systematic uncertainty due to this peaking background is estimated using MC simulations in which the peaking background is modeled, and the nominal fit procedure, which neglects this peaking background, is applied. The effect of interference between $b \rightarrow c \bar{u} d$ and $\bar{b} \rightarrow \bar{u} c \bar{d}$ decay amplitudes of the accompanying $B$ meson is estimated using MC simulations that account for possible deviations from the time evolution described by Eq. (1) [36]. Possible correlations between $B A B A R$ and Belle are accounted for in the evaluation of the contributions due to the physics parameters, the peaking background, and the tag-side interference. In the MC studies described above, the largest deviations are assigned as systematic uncertainties. The total systematic uncertainty is the quadratic sum of all contributions.

The statistical significance of the results is estimated using a likelihood-ratio approach by computing the change in $2 \ln \mathcal{L}$ when the $C P$ violation parameters are fixed to zero. The effect of systematic uncertainties is included by convolution of the likelihood distributions. No significant direct $C P$ violation is observed. The measurement excludes the hypothesis of no mixing-induced $C P$ violation in $\bar{B}^{0} \rightarrow D_{C P}^{(*)} h^{0}$ decays at a confidence level of 1-6.6 $\times 10^{-8}$, corresponding to a significance of 5.4 standard deviations.

The analysis is validated by a variety of cross-checks. The same measurement is performed for $\bar{B}^{0} \rightarrow D^{(*) 0} h^{0}$ decays with the CKM-favored $D^{0} \rightarrow K^{-} \pi^{+}$decay mode. These decays provide a kinematically similar, highstatistics control sample. The result agrees with the assumption of negligible $C P$ violation for these decays. Measurements of the neutral $B$ meson lifetime using the control sample and $\bar{B}^{0} \rightarrow D_{C P}^{(*)} h^{0}$ decays yield $\tau_{B^{0}}=$ $1.518 \pm 0.026$ (stat) ps and $\tau_{B^{0}}=1.520 \pm 0.064$ (stat) ps, respectively, in agreement with the world average $\tau_{B^{0}}=$ $1.519 \pm 0.005 \mathrm{ps}$ [22]. All measurements for the control sample and for $\bar{B}^{0} \rightarrow D_{C P}^{(*)} h^{0}$ decays have also been performed for data separated by experiment and by decay mode, and yield consistent results. The results for $\bar{B}^{0} \rightarrow$ $D_{C P}^{(*)} h^{0}$ decays separated by experiment are $\sin (2 \beta)=$ $0.52 \pm 0.15$ (stat) for $B A B A R$ and $0.83 \pm 0.15$ (stat) for Belle, and the results separated by the $C P$ content of the
final states are $\sin (2 \beta)=0.52 \pm 0.15$ (stat) for $C P$-even and $0.80 \pm 0.15$ (stat) for $C P$-odd.

In summary, we combine the final $B A B A R$ and Belle data samples, totaling more than $1 \mathrm{ab}^{-1}$ collected at the $\Upsilon(4 S)$ resonance [19,37], and perform a simultaneous analysis of the data collected by both experiments. We observe for the first time $C P$ violation in $\bar{B}^{0} \rightarrow D_{C P}^{(*)} h^{0}$ decays driven by mixing-induced $C P$ violation. We measure $\sin (2 \beta)=$ $0.66 \pm 0.10$ (stat) $\pm 0.06$ (syst). This result agrees within 0.2 standard deviations with the world average of $\sin (2 \beta)=0.68 \pm 0.02$ [38] measured from $b \rightarrow c \bar{c} s$ transitions, and is consistent with the measurements of $b \rightarrow s$ penguin-mediated $B$ meson decays [9-12] at current precision. The presented measurement supersedes the previous $B A B A R$ result for $\bar{B}^{0} \rightarrow D_{C P}^{(*)} h^{0}$ decays [15].

We thank the PEP-II and KEKB groups for the excellent operation of the accelerators, and the computing organizations that support $B A B A R$ and Belle. The Belle experiment wishes to acknowledge the KEK cryogenics group for efficient solenoid operations. This work was supported by ARC and DIISR (Australia); FWF (Austria); NSERC (Canada); NSFC (China); MSMT (Czechia); CEA and CNRS-IN2P3 (France); BMBF, CZF, DFG, and VS (Germany); DST (India); INFN (Italy); MEXT, JSPS and Nagoya TLPRC (Japan); MOE, MSIP, NRF, GSDC of KISTI, and BK21Plus (Korea); FOM (The Netherlands); NFR (Norway); MNiSW and NCN (Poland); MES and RFAAE (Russian Federation); ARRS (Slovenia); IKERBASQUE, MINECO and UPV/EHU (Spain); SNSF (Switzerland); NSC and MOE (Taiwan); STFC (United Kingdom); BSF (USA-Israel); and DOE and NSF (USA). Individuals have received support from the Marie Curie EIF (European Union) and the A. P. Sloan Foundation (USA).
*Deceased.
${ }^{\text {§ }}$ Present address: University of Huddersfield, Huddersfield HD1 3DH, United Kingdom.
${ }^{11}$ Also at Università di Sassari, I-07100 Sassari, Italy.
Present address: University of South Alabama, Mobile, Alabama 36688, USA.
${ }^{* *}$ Present address: Laboratoire de Physique Nucléaire et de Hautes Energies, IN2P3/CNRS, F-75252 Paris, France.
[1] N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963); M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973).
[2] B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 87, 091801 (2001).
[3] K. Abe et al. (Belle Collaboration), Phys. Rev. Lett. 87, 091802 (2001).
[4] B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 93, 131801 (2004).
[5] Y. Chao et al. (Belle Collaboration), Phys. Rev. Lett. 93, 191802 (2004).
[6] B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 79, 072009 (2009).
[7] I. Adachi et al. (Belle Collaboration), Phys. Rev. Lett. 108, 171802 (2012).
[8] R. Fleischer, Phys. Lett. B 562, 234 (2003); R. Fleischer, Nucl. Phys. B 659, 321 (2003).
[9] B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 79, 052003 (2009).
[10] Y. Nakahama et al. (Belle Collaboration), Phys. Rev. D 82, 073011 (2010).
[11] J. P. Lees et al. (BABAR Collaboration), Phys. Rev. D 85, 112010 (2012).
[12] L. Santelj et al. (Belle Collaboration), J. High Energy Phys. 10 (2014) 165.
[13] Y. Grossman and M. P. Worah, Phys. Lett. B 395, 241 (1997); D. London and A. Soni, Phys. Lett. B 407, 61 (1997); T. Moroi, Phys. Lett. B 493, 366 (2000); S. Baek, T. Goto, Y. Okada, and K. I. Okumura, Phys. Rev. D 64, 095001 (2001); D. Chang, A. Masiero, and H. Murayama, Phys. Rev. D 67, 075013 (2003).
[14] P. Krokovny et al. (Belle Collaboration), Phys. Rev. Lett. 97, 081801 (2006).
[15] B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 99, 081801 (2007).
[16] B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 99, 231802 (2007).
[17] Another naming convention for direct $C P$ asymmetries, $\mathcal{A}(=-\mathcal{C})$, in decays to $C P$ eigenstates is also used in the literature.
[18] PEP-II Conceptual Design Report, SLAC Report No. SLAC-R-418 (1993).
[19] S. Kurokawa and E. Kikutani, Nucl. Instrum. Methods Phys. Res., Sect. A 499, 1 (2003), and other papers in this volume; T. Abe et al., Prog. Theor. Exp. Phys. (2013) 03A001, and references therein.
[20] B. Aubert et al. (BABAR Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 479, 1 (2002); B. Aubert et al. (BABAR Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 729, 615 (2013).
[21] A. Abashian et al. (Belle Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 479, 117 (2002); also see detector section in J. Brodzicka et al., Prog. Theor. Exp. Phys. (2012) 04D001.
[22] K. A. Olive et al. (Particle Data Group), Chin. Phys. C 38, 090001 (2014).
[23] K. F. Chen et al. (Belle Collaboration), Phys. Rev. D 72, 012004 (2005).
[24] In this Letter the inclusion of charge-conjugated decay modes is implied unless otherwise stated.
[25] M. Feindt and U. Kerzel, Nucl. Instrum. Methods Phys. Res., Sect. A 559, 190 (2006).
[26] The Fox-Wolfram moments were introduced in [27]. The modified Fox-Wolfram moments used in this Letter are described in [28].
[27] G. C. Fox and S. Wolfram, Phys. Rev. Lett. 41, 1581 (1978).
[28] S. H. Lee et al. (Belle Collaboration), Phys. Rev. Lett. 91, 261801 (2003).
[29] E. Bagan, P. Ball, V. M. Braun, and H. G. Dosch, Phys. Lett. B 278, 457 (1992); P. Ball, Nucl. Phys. B 421, 593 (1994).
[30] J. E. Gaiser et al. (Crystal Ball Collaboration), Phys. Rev. D 34, 711 (1986).
[31] H. Albrecht et al. (ARGUS Collaboration), Phys. Lett. B 241, 278 (1990).
[32] B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 66, 032003 (2002).
[33] H. Tajima et al., Nucl. Instrum. Methods Phys. Res., Sect. A 533, 370 (2004).
[34] H. Kakuno et al., Nucl. Instrum. Methods Phys. Res., Sect. A 533, 516 (2004).
[35] A. J. Bevan et al., The Physics of the B Factories (Springer, Heidelberg, 2014); Eur. Phys. J. C 74, 3026 (2014).
[36] O. Long, M. Baak, R. N. Cahn, and D. Kirkby, Phys. Rev. D 68, 034010 (2003).
[37] B. Aubert et al. (BABAR Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 726, 203 (2013).
[38] Y. Amhis et al. (Heavy Flavor Averaging Group), arXiv: 1412.7515.

