101 research outputs found

    Blood pressure and cardiac autonomic adaptations to isometric exercise training: A randomized sham‐controlled study

    Get PDF
    Isometric exercise training (IET) is increasingly cited for its role in reducing resting blood pressure (BP). Despite this, few studies have investigated a potential sham effect attributing to the success of IET, thus dictating the aim of the present study. Thirty physically inactive males (n = 15) and females (n = 15) were randomly assigned into three groups. The IET group completed a wall squat intervention at 95% peak heart rate (HR) using a prescribed knee joint angle. The sham group performed a parallel intervention, but at an intensity (<75% peak HR) previously identified to be inefficacious over a 4-week training period. No-intervention controls maintained their normal daily activities. Pre- and post-measures were taken for resting and continuous blood pressure and cardiac autonomic modulation. Resting clinic and continuous beat-to-beat systolic (−15.2 ± 9.2 and −7.3 ± 5.6 mmHg), diastolic (−4.6 ± 5 and −4.5 ± 5.1), and mean (−7 ± 4.2 and −7.5 ± 5.3) BP, respectively, all significantly decreased in the IET group compared to sham and no-intervention control. The IET group observed a significant decrease in low-frequency normalized units of heart rate variability concurrent with a significant increase in high-frequency normalized units of heart rate variability compared to both the sham and no-intervention control groups. The findings of the present study reject a nonspecific effect and further support the role of IET as an effective antihypertensive intervention. Clinical Trials ID: NCT05025202

    Blood pressure and cardiac autonomic adaptations to isometric exercise training: A randomized sham-controlled study

    Get PDF
    Isometric exercise training (IET) is increasingly cited for its role in reducing resting blood pressure (BP). Despite this, few studies have investigated a potential sham effect attributing to the success of IET, thus dictating the aim of the present study. Thirty physically inactive males (n=15) and females (n=15) were randomly assigned into 3 groups. The IET group completed a wall-squat intervention at 95% peak heart rate (HR) using a prescribed knee joint angle. The sham group performed a parallel intervention, but at an intensity (<75% peak HR) previously identified to be inefficacious over a 4-week training period. No-intervention controls maintained their normal daily activities. Pre- and post-measures were taken for resting and continuous blood pressure and cardiac autonomic modulation. Resting clinic and continuous beat to beat systolic (-15.2±9.2 and -7.3±5.6 mmHg), diastolic (-4.6±5 and -4.5±5.1) and mean (-7±4.2 and -7.5±5.3) BP, respectively, all significantly decreased in the IET group compared to sham and no-intervention control. The IET group observed a significant decrease in low frequency normalised units of heart rate variability concurrent with a significant increase in high frequency normalised units of heart rate variability compared to both the sham and no-intervention control groups. The findings of the present study reject a non-specific effect and further support the role of IET as an effective anti-hypertensive intervention

    Onset of Patterns in an Ocillated Granular Layer: Continuum and Molecular Dynamics Simulations

    Full text link
    We study the onset of patterns in vertically oscillated layers of frictionless dissipative particles. Using both numerical solutions of continuum equations to Navier-Stokes order and molecular dynamics (MD) simulations, we find that standing waves form stripe patterns above a critical acceleration of the cell. Changing the frequency of oscillation of the cell changes the wavelength of the resulting pattern; MD and continuum simulations both yield wavelengths in accord with previous experimental results. The value of the critical acceleration for ordered standing waves is approximately 10% higher in molecular dynamics simulations than in the continuum simulations, and the amplitude of the waves differs significantly between the models. The delay in the onset of order in molecular dynamics simulations and the amplitude of noise below this onset are consistent with the presence of fluctuations which are absent in the continuum theory. The strength of the noise obtained by fit to Swift-Hohenberg theory is orders of magnitude larger than the thermal noise in fluid convection experiments, and is comparable to the noise found in experiments with oscillated granular layers and in recent fluid experiments on fluids near the critical point. Good agreement is found between the mean field value of onset from the Swift-Hohenberg fit and the onset in continuum simulations. Patterns are compared in cells oscillated at two different frequencies in MD; the layer with larger wavelength patterns has less noise than the layer with smaller wavelength patterns.Comment: Published in Physical Review

    Transport Coefficients for Granular Media from Molecular Dynamics Simulations

    Full text link
    Under many conditions, macroscopic grains flow like a fluid; kinetic theory pred icts continuum equations of motion for this granular fluid. In order to test the theory, we perform event driven molecular simulations of a two-dimensional gas of inelastic hard disks, driven by contact with a heat bath. Even for strong dissipation, high densities, and small numbers of particles, we find that continuum theory describes the system well. With a bath that heats the gas homogeneously, strong velocity correlations produce a slightly smaller energy loss due to inelastic collisions than that predicted by kinetic theory. With an inhomogeneous heat bath, thermal or velocity gradients are induced. Determination of the resulting fluxes allows calculation of the thermal conductivity and shear viscosity, which are compared to the predictions of granular kinetic theory, and which can be used in continuum modeling of granular flows. The shear viscosity is close to the prediction of kinetic theory, while the thermal conductivity can be overestimated by a factor of 2; in each case, transport is lowered with increasing inelasticity.Comment: 14 pages, 17 figures, 39 references, submitted to PRE feb 199

    Continuum-type stability balloon in oscillated granular layers

    Get PDF
    The stability of convection rolls in a fluid heated from below is limited by secondary instabilities, including the skew-varicose and crossroll instabilities. We observe a stability boundary defined by the same instabilities in stripe patterns in a vertically oscillated granular layer. Molecular dynamics simulations show that the mechanism of the skew-varicose instability in granular patterns is similar to that in convection. These results suggest that pattern formation in granular media can be described by continuum models analogous to those used in fluid systems.Comment: 4 pages, 6 ps figs, submitted to PR

    Patterns of impact resulting from a 'sit less, move more' web-based program in sedentary office employees.

    Get PDF
    PURPOSE: Encouraging office workers to 'sit less and move more' encompasses two public health priorities. However, there is little evidence on the effectiveness of workplace interventions for reducing sitting, even less about the longer term effects of such interventions and still less on dual-focused interventions. This study assessed the short and mid-term impacts of a workplace web-based intervention (Walk@WorkSpain, W@WS; 2010-11) on self-reported sitting time, step counts and physical risk factors (waist circumference, BMI, blood pressure) for chronic disease. METHODS: Employees at six Spanish university campuses (n=264; 42±10 years; 171 female) were randomly assigned by worksite and campus to an Intervention (used W@WS; n=129; 87 female) or a Comparison group (maintained normal behavior; n=135; 84 female). This phased, 19-week program aimed to decrease occupational sitting time through increased incidental movement and short walks. A linear mixed model assessed changes in outcome measures between the baseline, ramping (8 weeks), maintenance (11 weeks) and follow-up (two months) phases for Intervention versus Comparison groups. RESULTS: A significant 2 (group) × 2 (program phases) interaction was found for self-reported occupational sitting (F[3]=7.97, p=0.046), daily step counts (F[3]=15.68, p=0.0013) and waist circumference (F[3]=11.67, p=0.0086). The Intervention group decreased minutes of daily occupational sitting while also increasing step counts from baseline (446±126; 8,862±2,475) through ramping (+425±120; 9,345±2,435), maintenance (+422±123; 9,638±3,131) and follow-up (+414±129; 9,786±3,205). In the Comparison group, compared to baseline (404±106), sitting time remained unchanged through ramping and maintenance, but decreased at follow-up (-388±120), while step counts diminished across all phases. The Intervention group significantly reduced waist circumference by 2.1cms from baseline to follow-up while the Comparison group reduced waist circumference by 1.3cms over the same period. CONCLUSIONS: W@WS is a feasible and effective evidence-based intervention that can be successfully deployed with sedentary employees to elicit sustained changes on "sitting less and moving more"

    New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk.

    Get PDF
    Levels of circulating glucose are tightly regulated. To identify new loci influencing glycemic traits, we performed meta-analyses of 21 genome-wide association studies informative for fasting glucose, fasting insulin and indices of beta-cell function (HOMA-B) and insulin resistance (HOMA-IR) in up to 46,186 nondiabetic participants. Follow-up of 25 loci in up to 76,558 additional subjects identified 16 loci associated with fasting glucose and HOMA-B and two loci associated with fasting insulin and HOMA-IR. These include nine loci newly associated with fasting glucose (in or near ADCY5, MADD, ADRA2A, CRY2, FADS1, GLIS3, SLC2A2, PROX1 and C2CD4B) and one influencing fasting insulin and HOMA-IR (near IGF1). We also demonstrated association of ADCY5, PROX1, GCK, GCKR and DGKB-TMEM195 with type 2 diabetes. Within these loci, likely biological candidate genes influence signal transduction, cell proliferation, development, glucose-sensing and circadian regulation. Our results demonstrate that genetic studies of glycemic traits can identify type 2 diabetes risk loci, as well as loci containing gene variants that are associated with a modest elevation in glucose levels but are not associated with overt diabetes

    Supplement: "Localization and broadband follow-up of the gravitational-wave transient GW150914" (2016, ApJL, 826, L13)

    Get PDF
    This Supplement provides supporting material for Abbott et al. (2016a). We briefly summarize past electromagnetic (EM) follow-up efforts as well as the organization and policy of the current EM follow-up program. We compare the four probability sky maps produced for the gravitational-wave transient GW150914, and provide additional details of the EM follow-up observations that were performed in the different bands

    Common Genetic Polymorphisms Influence Blood Biomarker Measurements in COPD

    Get PDF
    Implementing precision medicine for complex diseases such as chronic obstructive lung disease (COPD) will require extensive use of biomarkers and an in-depth understanding of how genetic, epigenetic, and environmental variations contribute to phenotypic diversity and disease progression. A meta-analysis from two large cohorts of current and former smokers with and without COPD [SPIROMICS (N = 750); COPDGene (N = 590)] was used to identify single nucleotide polymorphisms (SNPs) associated with measurement of 88 blood proteins (protein quantitative trait loci; pQTLs). PQTLs consistently replicated between the two cohorts. Features of pQTLs were compared to previously reported expression QTLs (eQTLs). Inference of causal relations of pQTL genotypes, biomarker measurements, and four clinical COPD phenotypes (airflow obstruction, emphysema, exacerbation history, and chronic bronchitis) were explored using conditional independence tests. We identified 527 highly significant (p 10% of measured variation in 13 protein biomarkers, with a single SNP (rs7041; p = 10−392) explaining 71%-75% of the measured variation in vitamin D binding protein (gene = GC). Some of these pQTLs [e.g., pQTLs for VDBP, sRAGE (gene = AGER), surfactant protein D (gene = SFTPD), and TNFRSF10C] have been previously associated with COPD phenotypes. Most pQTLs were local (cis), but distant (trans) pQTL SNPs in the ABO blood group locus were the top pQTL SNPs for five proteins. The inclusion of pQTL SNPs improved the clinical predictive value for the established association of sRAGE and emphysema, and the explanation of variance (R2) for emphysema improved from 0.3 to 0.4 when the pQTL SNP was included in the model along with clinical covariates. Causal modeling provided insight into specific pQTL-disease relationships for airflow obstruction and emphysema. In conclusion, given the frequency of highly significant local pQTLs, the large amount of variance potentially explained by pQTL, and the differences observed between pQTLs and eQTLs SNPs, we recommend that protein biomarker-disease association studies take into account the potential effect of common local SNPs and that pQTLs be integrated along with eQTLs to uncover disease mechanisms. Large-scale blood biomarker studies would also benefit from close attention to the ABO blood group

    Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk.

    Get PDF
    Blood pressure is a heritable trait influenced by several biological pathways and responsive to environmental stimuli. Over one billion people worldwide have hypertension (≥140 mm Hg systolic blood pressure or  ≥90 mm Hg diastolic blood pressure). Even small increments in blood pressure are associated with an increased risk of cardiovascular events. This genome-wide association study of systolic and diastolic blood pressure, which used a multi-stage design in 200,000 individuals of European descent, identified sixteen novel loci: six of these loci contain genes previously known or suspected to regulate blood pressure (GUCY1A3-GUCY1B3, NPR3-C5orf23, ADM, FURIN-FES, GOSR2, GNAS-EDN3); the other ten provide new clues to blood pressure physiology. A genetic risk score based on 29 genome-wide significant variants was associated with hypertension, left ventricular wall thickness, stroke and coronary artery disease, but not kidney disease or kidney function. We also observed associations with blood pressure in East Asian, South Asian and African ancestry individuals. Our findings provide new insights into the genetics and biology of blood pressure, and suggest potential novel therapeutic pathways for cardiovascular disease prevention
    corecore