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Continuum-Type Stability Balloon in Oscillated Granular Layers
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The stability of convection rolls in a fluid heated from below is limited by secondary instabilities
including the skew-varicose and crossroll instabilities. We observe a stability boundary defined
these same instabilities in stripe patterns in a vertically oscillated granular layer. Molecular dynam
simulations show that the mechanism of the skew-varicose instability in granular patterns is similar
that in convection. These results suggest that pattern formation in granular media can be describe
continuum models analogous to those used in fluid systems. [S0031-9007(98)06880-X]

PACS numbers: 47.54.+r, 46.10.+z, 83.10.Pp, 83.70.Fn
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A system comprised of a large number of discrete grai
behaves like a fluid under some conditions and like a so
under others but can also display behavior unique to t
granular state [1,2]. Despite substantial recent interest
both the statics and dynamics of granular systems, there
no unifying theoretical description of granular materials
and it has been argued that a general local, continuum
scription of granular media, analogous to hydrodynamic
is unlikely to exist [2,3]. Nonetheless, there are specifi
granular systems which can be described by continuu
models [4]. In this Letter we report on a study of the sta
bility of stripe patterns that form when a horizontal laye
of granular material is oscillated vertically [5–7]. In both
experiments and simulations, we observe behavior str
ingly similar to that seen in fluid dynamical systems [8].

Experiments on pattern formation in oscillated granula
layers [5–7] have demonstrated the existence of subh
monic stripe, square, and hexagonal patterns [5,6], as w
as localized structures called oscillons [7], as the frequen
and amplitude of the vibration and the layer thickness a
varied. The patterns are similar in spatial structure to tho
observed in fluid dynamical systems, most notably para
lel convection rolls in a thin layer of fluid heated from
below (Rayleigh-Bénard convection) [8,9] and standin
surface waves in a vertically oscillated liquid layer (th
Faraday instability) [8,10]. Molecular dynamics simula
tions [11,12] have reproduced the observed granular p
terns at values of the control parameters equal to those u
in the experiments [12]. Some aspects of the granular p
terns have been described using models for the dyna
ics [13], amplitude equations [14], and iterative maps [15
However, a rigorously derived theoretical description o
pattern formation in oscillated granular media does not y
exist, and the extent to which the well-developed unde
standing of patterns in fluid systems [8] can be applied
granular material has not been established.

Our experimental apparatus is similar to that used
Refs. [5,6]. Bronze spheres150 180 mm in diameter are
contained in a cylindrical cell 14.7 cm in diameter. Th
cell sidewall and top lid are made of Plexiglas. Th
aluminum bottom plate is flat out to a radius of 5.0 cm, the
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slopes upwards to the sidewall at an angle of2±. Like fluid
convection rolls, the stripes prefer to form perpendicul
to the cell wall; the “beach” reduces the effect of th
sidewall on their orientation. The cell is evacuated a
an electromagnetic shaker, driven sinusoidally, oscilla
the cell vertically at a frequencyf. G, the amplitude of
the acceleration relative to the gravitational accelerati
g, is determined using an accelerometer mounted on
bottom of the cell. The pattern is illuminated with a rin
of light-emitting diodes encircling the cell and strobed
fy2. Images of the patterns are recorded using a dig
video camera mounted above the cell.

Experiments were performed on layers of thicknessN
(scaled by the mean particle diameter) in the range6.6 ,

N , 17, in a frequency range over which stripe pattern
formed. The layer was flat forG , Gc ø 2.5, at which
point stripes appeared via a subcritical bifurcation. Typ
cally, G was increased suddenly from below onset to
value in the stripe regime. We observed time-depend
patterns which were predominantly stripelike but with cu
vature, and which contained point defects, grain boun
aries, spiral defects [6], and sidewall foci. Stripes persist
asG was increased, until the system (for most condition
underwent a subcritical transition to hexagons [5]. Belo
this transition we observed secondary instabilities of t
stripes [8,9] which limited the wave-number range ov
which stripes were stable. Similar phenomena occurred
cells without a beach.

Figure 1 shows the localized skew-varicose instabil
observed when the local wave number of the patte
becomes too large. An initially straight pattern of stripe
develops a distortion. Eventually one or more stripes pin
off and dislocation defects form, which then propaga
away by a combination of climbing and gliding. Since on
or more stripes are destroyed by this process, it leads
decrease in the local wave number. Analogous behav
has been observed in Rayleigh-Bénard convection [16–
and the Faraday instability [19].

Figures 2(a)–2(c) show an example of a crossr
instability, by which the stripes lose stability to perpen
dicular stripes and/or squares which develop local
© 1998 The American Physical Society 1421
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FIG. 1. A sequence of images showing the skew-varico
instability of a stripe pattern and the formation of a pa
of defects. (a) Timet ­ 24.0 s, straight stripes with wave
numberkkl ­ 10.8 cm21; (b) t ­ 0 s, skew-varicose distortion
is visible; (c) t ­ 0.5 s, defects form; (d)t ­ 1.0 s, defects
move away, leaving a stripe pattern withkkl ­ 9.9 cm21.
G ­ 3.10, f ­ 35 Hz, N ­ 9.2, and a 4.7 cm square regio
of the cell is shown.

Figures 2(d)–2(f) illustrate the replacement of a stri
pattern by perpendicular stripes via the propagation
a grain boundary. For most conditions, both of the
instabilities occur when the local wave number becom
too small, and both are also observed in fluid syste
[10,16,20,21].

To determine the wave numberk at which the stripe
pattern becomes unstable, we used the method of Ref.

FIG. 2. Top: a sequence of images showing the cross
instability of a stripe pattern. (a)t ­ 28.1 s, stripes with
kkl ­ 11.1 cm21; (b) t ­ 1.5 s, local modulation of the stripes
is evident; (c)t ­ 5.3 s, crossrolls have developed.G ­ 2.98,
f ­ 35 Hz, N ­ 6.7, and the region shown is 3.5 cm squar
Bottom: A propagating grain boundary. (d)t ­ 22.4 s,
stripes withkkl ­ 6.8 cm21; (e) t ­ 2.1 s, perpendicular rolls
invade from the top edge of the image; (f)t ­ 5.0 s, the pattern
is predominantly perpendicular stripes withkkl ­ 7.0 cm21.
G ­ 2.82, f ­ 26.8 Hz, N ­ 11.3, and the region shown is
4.7 cm square.
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to determinek locally in small regions of the pattern
in which the instability occurs;k was averaged over the
region of interest for a time series of images bracketing
instability. The mean wave numberkkl is plotted in Fig. 3
for the skew-varicose event of Fig. 1.kkl increases up to
the onset of the instability, then suddenly changes wh
a stripe is pinched off and defects form. The standa
deviation s of kkl increases as the pattern gradua
becomes distorted and is relatively large immediate
following the instability. After the defects have travele
away, a stripe pattern with a smaller wave number rema
ands is again low.

Figure 4 shows analogous data for the grain bound
event of Figs. 2(d)–2(f). In this casekkl decreases prior
to the onset of the instability. When the perpendicu
rolls invade, the local pattern is disrupted ands increases.
At the end of the time interval shown, the region contai
a pattern of straight stripes perpendicular to and withk
larger than the original stripes.

By analyzing a number of similar events over a ran
of G, f, andN , we can construct a stability diagram fo
the stripe pattern analogous to the Busse balloon [9]
Rayleigh-Bénard convection. We take the maximum va
of kkl before a stripe pinches off as an estimate of the wa
number corresponding to the skew-varicose instability, a
the minimum value ofkkl before the appearance of pe
pendicular rolls as that for the crossroll and grain boun
ary instabilities.

There is a limited range ofk over which the stripe
pattern is stable, as shown by Fig. 5, which is the measu
stability diagram forN ­ 9.2 and f ­ 29.7 Hz. The
stability range is bounded at highk by the skew-varicose
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FIG. 3. The average wave numberkkl (top) and standard
deviation s (bottom) for the skew-varicose event illustrate
in Fig. 1. The times corresponding to the four images sho
in Fig. 1 are indicated above the graph. Between the das
lines the pattern is not locally stripelike due to the presen
of defects, and the values ofkkl and s are plotted as small
symbols to illustrate only the change that occurs when
defects form.
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FIG. 4. The average wave numberkkl (top) and standard de-
viation s (bottom) for the grain boundary event of Figs. 2(d)–
2(f). The times corresponding to the images shown
Figs. 2(d)–2(f) are indicated above the graph. Values ofkkl
and s between the dashed lines are plotted as small symb
to illustrate the qualitative change that occurs when the perpe
dicular rolls invade.

instability and at lowk by the crossroll instability and
the grain boundary mechanism. This boundary is bas
on measurements oflocal instabilities, but it was recently
demonstrated that local instabilities in Rayleigh-Béna
convection appear at the stability boundary calculate
for infinite, straight convection rolls [18]. The stability
boundary in Fig. 5 apparently has a nonzero width at t
transition from stripes to the flat layer, perhaps becau
our method may somewhat overestimate the width
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FIG. 5. The stability boundary for stripe patterns atN ­ 9.2,
f ­ 29.7 Hz. Open squares indicate the crossroll instability
solid squares the grain boundary mechanism, and circles
skew-varicose instability. Each point is the average ov
several events; the error bars are standard deviations. T
lower dashed line indicates the point at which the pattern fi
the cell asG is increased, and the upper dashed line marks t
transition from stripes to hexagons.
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the stability balloon, since the large-amplitude dynami
we take as indicating the instability develops some tim
after the pattern actually crosses the stability bounda
or possibly because the intrinsic noisiness of the granu
system prevents the saddle node from being reach
Similar stability boundaries, but with slightly differen
shapes, were measured at a number of different values
N andf. However, for the depth in Fig. 5, the boundary i
different at high frequencies: atf ­ 40 Hz, the stripes are
unstable to crossrolls on both the high and lowk sides of
the stability boundary, and atf ­ 45 Hz, squares rather
than hexagons limit the range of existence of stripes
high G. These stability boundaries are similar to thos
for Rayleigh-Bénard convection rolls: For low Prand
number fluids [22], the skew-varicose instability forms th
high-k limit of the stability balloon, while crossrolls are
observed on the low-k side [9,16,17]. For a higher Prandt
number, the crossroll instability occurs at both high an
low k [9,20].

We have also observed skew-varicose and crossroll
stabilities in event-driven molecular dynamics simulation
that have been previously validated against experime
[12]. We simulated the motions of 60 000 particles i
a square cell of side 100 particle diameters, with period
boundary conditions in both horizontal directions. A pa
tern of straight stripes withk either too large or too small
to be stable at the frequency of the simulation was used
the initial condition. Time sequences of the resulting in
stabilities are shown in Fig. 6. As in the experiments, th
skew-varicose instability leads to a decrease ink, while
the crossroll instability leads to an increase ink.

Patterns of rolls in fluid convection are well describe
by partial differential equations for the amplitude (near o
set) and the phase of the pattern [8]. The crossroll
stability exists in an amplitude equation description th
allows for the existence of two perpendicular modes. T
skew-varicose instability, however, depends on the ex
tence of a large scale vertical vorticity (or mean flow
which couples to roll curvature [23]; it does not arise sole
from symmetry considerations. To determine whether
analogous vertical vorticity exists for skew-varicose inst
bilities in the granular layer, the particle velocities from
the simulations were averaged spatially over depth a
temporally over one oscillation of the pattern. The resu
ing two-dimensional velocity field$y was then low-pass
filtered to remove spatial frequencies due to the pattern
self. Finally, we calculated the squared vorticity,v2 ;
s= 3 $yd2, and averaged it over the entire cell. The re
sult is shown in Fig. 6(c). The vertical vorticity increase
as the skew-varicose instability develops, then sharply d
creases after a stripe pinches off. In contrast, there is
change inkv2l for the crossroll instability.

We have shown that the range of stability of stripe pa
terns which form in an oscillated granular layer is limite
by the skew-varicose and crossroll instabilities, and th
the stability boundary of stripe patterns in granular laye
1423
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FIG. 6. Instabilities of a stripe pattern from simulations of th
oscillating layer withG ­ 3.0, N ­ 5.4. (a) Skew-varicose
instability atfy

p
gyH ­ 0.37; kH ­ 1.7 initially and 1.4 after

the instability. (b) Crossroll instability atfy
p

gyH ­ 0.40;
kH ­ 1.36 before and 1.7 after. HereH is the layer depth and
T is the oscillation period. (c) Mean-square vertical vorticit
as a function of time for the instabilities shown in (a) and (b)

is similar to that of straight rolls in a convecting fluid. Ou
simulations produce the same instabilities and indicate t
vertical vorticity plays a role in the skew-varicose insta
bility, as it does in fluid systems. These results demo
strate a clear correspondence between patterns in oscilla
granular media and hydrodynamic systems. Reproduct
of this stability boundary would be a stringent test of an
continuum description of pattern formation in an oscillate
granular layer.
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