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Continuum-Type Stability Balloon in Oscillated Granular Layers
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The stability of convection rolls in a fluid heated from below is limited by secondary instabilities,
including the skew-varicose and crossroll instabilities. We observe a stability boundary defined by
these same instabilities in stripe patterns in a vertically oscillated granular layer. Molecular dynamics
simulations show that the mechanism of the skew-varicose instability in granular patterns is similar to
that in convection. These results suggest that pattern formation in granular media can be described by
continuum models analogous to those used in fluid systems. [S0031-9007(98)06880-X]

PACS numbers: 47.54.+r, 46.10.+z, 83.10.Pp, 83.70.Fn

A system comprised of a large number of discrete grainslopes upwards to the sidewall at an angleofLike fluid
behaves like a fluid under some conditions and like a soli¢donvection rolls, the stripes prefer to form perpendicular
under others but can also display behavior unique to thto the cell wall; the “beach” reduces the effect of the
granular state [1,2]. Despite substantial recent interest inidewall on their orientation. The cell is evacuated and
both the statics and dynamics of granular systems, there &n electromagnetic shaker, driven sinusoidally, oscillates
no unifying theoretical description of granular materials,the cell vertically at a frequency. I', the amplitude of
and it has been argued that a general local, continuum déhe acceleration relative to the gravitational acceleration
scription of granular media, analogous to hydrodynamicsg, is determined using an accelerometer mounted on the
is unlikely to exist [2,3]. Nonetheless, there are specifidottom of the cell. The pattern is illuminated with a ring
granular systems which can be described by continuurof light-emitting diodes encircling the cell and strobed at
models [4]. In this Letter we report on a study of the sta-f/2. Images of the patterns are recorded using a digital
bility of stripe patterns that form when a horizontal layervideo camera mounted above the cell.
of granular material is oscillated vertically [5—7]. In both  Experiments were performed on layers of thicknass
experiments and simulations, we observe behavior strikéscaled by the mean particle diameter) in the rafige<
ingly similar to that seen in fluid dynamical systems [8]. N < 17, in a frequency range over which stripe patterns

Experiments on pattern formation in oscillated granulaformed. The layer was flat fof < I'. = 2.5, at which
layers [5—7] have demonstrated the existence of subhapoint stripes appeared via a subcritical bifurcation. Typi-
monic stripe, square, and hexagonal patterns [5,6], as wethlly, I was increased suddenly from below onset to a
as localized structures called oscillons [7], as the frequencyalue in the stripe regime. We observed time-dependent
and amplitude of the vibration and the layer thickness ar@atterns which were predominantly stripelike but with cur-
varied. The patterns are similar in spatial structure to thoseature, and which contained point defects, grain bound-
observed in fluid dynamical systems, most notably paralaries, spiral defects [6], and sidewall foci. Stripes persisted
lel convection rolls in a thin layer of fluid heated from asI” was increased, until the system (for most conditions)
below (Rayleigh-Bénard convection) [8,9] and standingunderwent a subcritical transition to hexagons [5]. Below
surface waves in a vertically oscillated liquid layer (thethis transition we observed secondary instabilities of the
Faraday instability) [8,10]. Molecular dynamics simula- stripes [8,9] which limited the wave-number range over
tions [11,12] have reproduced the observed granular pawhich stripes were stable. Similar phenomena occurred in
terns at values of the control parameters equal to those usedlls without a beach.
in the experiments [12]. Some aspects of the granular pat- Figure 1 shows the localized skew-varicose instability
terns have been described using models for the dynanobserved when the local wave number of the pattern
ics [13], amplitude equations [14], and iterative maps [15].becomes too large. An initially straight pattern of stripes
However, a rigorously derived theoretical description ofdevelops a distortion. Eventually one or more stripes pinch
pattern formation in oscillated granular media does not yeoff and dislocation defects form, which then propagate
exist, and the extent to which the well-developed underaway by a combination of climbing and gliding. Since one
standing of patterns in fluid systems [8] can be applied t@r more stripes are destroyed by this process, it leads to a
granular material has not been established. decrease in the local wave number. Analogous behavior

Our experimental apparatus is similar to that used irhas been observed in Rayleigh-Bénard convection [16—18]
Refs. [5,6]. Bronze spherd$0-180 um in diameter are and the Faraday instability [19].
contained in a cylindrical cell 14.7 cm in diameter. The Figures 2(a)—2(c) show an example of a crossroll
cell sidewall and top lid are made of Plexiglas. Theinstability, by which the stripes lose stability to perpen-
aluminum bottom plate is flat out to a radius of 5.0 cm, therdicular stripes and/or squares which develop locally.
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FIG. 1. A sequence
instability of a stripe pattern and the formation of a pair
of defects. (a) Timer = —4.0 s, straight stripes with wave
numberk) = 10.8 cm™'; (b) ¢+ = 0 s, skew-varicose distortion
is visible; (c) r = 0.5 s, defects form; (d)r = 1.0 s, defects
move away, leaving a stripe pattern wifk) = 9.9 cm™!.

I' =3.10, f =35Hz, N =9.2, and a 4.7 cm square region
of the cell is shown.

Figures 2(d)—-2(f) illustrate the replacement of a stripe

to determinek locally in small regions of the pattern
in which the instability occursk was averaged over the
region of interest for a time series of images bracketing the
instability. The mean wave numbé) is plotted in Fig. 3
for the skew-varicose event of Fig. Xk) increases up to
the onset of the instability, then suddenly changes when
a stripe is pinched off and defects form. The standard
deviation o of (k) increases as the pattern gradually
becomes distorted and is relatively large immediately
following the instability. After the defects have traveled
away, a stripe pattern with a smaller wave number remains
and o is again low.

Figure 4 shows analogous data for the grain boundary
event of Figs. 2(d)—2(f). In this cas&é) decreases prior
to the onset of the instability. When the perpendicular
rolls invade, the local pattern is disrupted andhcreases.
At the end of the time interval shown, the region contains

of images showing the skew-varicose pattern of straight stripes perpendicular to and wkith

larger than the original stripes.

By analyzing a number of similar events over a range
of I', f, andN, we can construct a stability diagram for
the stripe pattern analogous to the Busse balloon [9] for
Rayleigh-Bénard convection. We take the maximum value
of (k) before a stripe pinches off as an estimate of the wave
number corresponding to the skew-varicose instability, and
the minimum value ofk) before the appearance of per-

pattern by perpendicular stripes via the propagation oPendicular rolls as that for the crossroll and grain bound-

a grain boundary. For most conditions, both of thes

instabilities occur when the local wave number becomes X i L
and both are also observed in fluid system?aﬂem is stable, as shown by Fig. 5, which is the measured

too small,
[10,16,20,21].
To determine the wave numbérat which the stripe

Ary instabilities.

There is a limited range ok over which the stripe

stability diagram forN = 9.2 and f = 29.7 Hz. The
stability range is bounded at highby the skew-varicose

pattern becomes unstable, we used the method of Ref. [18]
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FIG. 2. Top: a sequence of images showing the crossroll

instability of a stripe pattern. (a) = —8.1 s, stripes with
(k) = 11.1 cm™!; (b) + = 1.5 s, local modulation of the stripes
is evident; (c)t = 5.3 s, crossrolls have developed. = 2.98,

f =35Hz, N = 6.7, and the region shown is 3.5 cm square.
Bottom: A propagating grain boundary. (d)= —24s,
stripes with{k) = 6.8 cm™'; (e) + = 2.1 s, perpendicular rolls
invade from the top edge of the image; {f} 5.0 s, the pattern

is predominantly perpendicular stripes with) = 7.0 cm™!.

I' =282, f =268 Hz, N = 11.3, and the region shown is
4.7 cm square.
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FIG. 3. The average wave numbét) (top) and standard
deviation o (bottom) for the skew-varicose event illustrated
in Fig. 1. The times corresponding to the four images shown
in Fig. 1 are indicated above the graph. Between the dashed
lines the pattern is not locally stripelike due to the presence
of defects, and the values ¢t) and o are plotted as small
symbols to illustrate only the change that occurs when the
defects form.
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the stability balloon, since the large-amplitude dynamics
} we take as indicating the instability develops some time
\ after the pattern actually crosses the stability boundary,
} or possibly because the intrinsic noisiness of the granular
} , system prevents the saddle node from being reached.
\ Similar stability boundaries, but with slightly different

| eege shapes, were measured at a number of different values of
| N andf. However, for the depth in Fig. 5, the boundary is
° i different at high frequencies: gt= 40 Hz, the stripes are

J unstable to crossrolls on both the high and lbwides of

| the stability boundary, and gt = 45 Hz, squares rather

! {1 than hexagons limit the range of existence of stripes at
oooooooc#" ¢ ° 00000 high I'. These stability boundaries are similar to those
) 0 ) 4 6 for Rayleigh-Bénard convection rolls: For low Prandtl
time (s) number fluids [22], the skew-varicose instability forms the

FIG. 4. The average wave numbi) (top) and standard de- high- limit of the stability balloon, while crossrolls are

viation o (bottom) for the grain boundary event of Figs. 2(d)— 0bserved on the low-side [9,16,17]. For a higher Prandt|
2(f). The times corresponding to the images shown innumber, the crossroll instability occurs at both high and
Figs. 2(d)—2(f) are indicated above the graph. Valueskof |ow k [9,20].
and o between the dashed lines are plotted as small symbols \ye have also observed skew-varicose and crossroll in-
qu '”:JStraﬁ? the q(;J alitative change that occurs when the PETPE L tanilities in event-driven molecular dynamics simulations
euiar rofls nvade. that have been previously validated against experiment
) N ) - [12]. We simulated the motions of 60000 particles in
instability and at lowk by the crossroll instability and 5 square cell of side 100 particle diameters, with periodic
the grain boundary mechanism. This boundary is basegoundary conditions in both horizontal directions. A pat-
on measurements ¢dcal instabilities, but it was recently tern of straight stripes with either too large or too small
demonstrated that local instabilities in Rayleigh-Bénardg pe stable at the frequency of the simulation was used as
convection appear at the stability boundary calculateghe initial condition. Time sequences of the resulting in-
for infinite, straight convection rolls [18]. The stability stapilities are shown in Fig. 6. As in the experiments, the
boundary in Fig. 5 apparently has a nonzero width at thgyew-varicose instability leads to a decrease irwhile
transition from stripes to the flat layer, perhaps becausge crossroll instability leads to an increasexin
our method may somewhat overestimate the width of patterns of rolls in fluid convection are well described
by partial differential equations for the amplitude (near on-
set) and the phase of the pattern [8]. The crossroll in-
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stability exists in an amplitude equation description that
””” s —e— allows for the existence of two perpendicular modes. The
skew-varicose instability, however, depends on the exis-
tence of a large scale vertical vorticity (or mean flow),
ol 5 stable ¢ , ] which couples to roll curvature [23]; it does not arise solely
crossroll stripes skew=varicose from symmetry considerations. To determine whether an
r unstable unstable . - . . .
- —o—i analogous vertical vorticity exists for skew-varicose insta-
—E— FO- bilities in the granular layer, the particle velocities from
3t —E— O 1 the simulations were averaged spatially over depth and
77775955;_%7%7777 temporally over one oscillation of the pattern. The result-
ing two-dimensional velocity fieldr was then low-pass
flat layer filtered to remove spatial frequencies due to the pattern it-
) ‘ ‘ ‘ self. Finally, we calculated the squared vorticity?> =
7 8 ° 10 11 (V X )%, and averaged it over the entire cell. The re-
<k> (cm ") sult is shown in Fig. 6(c). The vertical vorticity increases

FIG. 5. The stability boundary for stripe patternshat= 9.2, ~ as the skew-varicose instability develops, then sharply de-
f =29.7 Hz. Open squares indicate the crossroll instability, creases after a stripe pinches off. In contrast, there is no
solid squares the grain boundary mechanism, and circles thehange iw?) for the crossroll instability.

skew-varicose instability. = Each point is the average over \ye haye shown that the range of stability of stripe pat-
several events; the error bars are standard deviations. The

lower dashed line indicates the point at which the pattern fills erns which form_ in an oscillated granular ',ay_ef is limited
the cell asI is increased, and the upper dashed line marks th&y the S_k_eW'Va”COSG and ?VOSSFOH mSt_alb”ltleS, and that
transition from stripes to hexagons. the stability boundary of stripe patterns in granular layers
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