122 research outputs found

    Impact of Carica papaya L. Fruit juice on plasma variables and tissue glycogen of induced hyperglycemic albino rats

    Get PDF
    It was aimed at to evaluate the activity of Carica papaya fruit juice on induced diabetic rats (Rattus norvegicus) with a view of proposing a management scheme. Animals were sacrificed after treatment with unripe and ripe papaya juice. The plasma glucose, cholesterol, protein and tissue glycogen concentrations were estimated. Feeding of papaya juice raised the levels of these parameters more than the controlled value throughout the work. The results showed that the concentrations of these parameters were significantly increased (p<0.05). The rise was more with unripe papaya when compared to ripe papaya. However, papaya intake must be with caution since its consumption increases blood glucose concentration.Keywords: Papaya, Fruit juice, Albino rats, Plasma variables, Hyperglycemia, Diabete

    Temperature Dependence of Elastic and Ultrasonic Properties of Sodium Borohydride

    Get PDF
    We present the temperature dependent elastic and ultrasonic properties of sodium borohydride. The second and third order elastic constants of NaBH4 have been computed in the temperature range 0-300K using Coulomb and Born-Mayer potential. The sodium borohydride crystallizes into NaCl-type structure. The computed values of second order elastic constants have been applied to evaluate the temperature dependent mechanical properties such as bulk modulus, shear modulus, tetragonal modulus, Poisson’s ratio and Zener anisotropy factor and ultrasonic velocity to predict futuristic information about sodium borohydride. The fracture to toughness ratio (bulk modulus/shear modulus) in sodium borohydride varied from 1.91 to 1.62, which shows its behavioral change from ductile to brittle on increasing the temperature. Then, ultrasonic Grüneisen parameters have been computed with the use of elastic constants in the temperature regime 100-300K. The obtained results have been discussed in correlation with available experimental and theoretical results. [1] A. Amudhavalli, M. Manikandan, A. Jemmy Cinthia, R. Rajeswarapalanichamy and K. Iyakutti, Z. Naturforsch. A 72 (2017) 321. [2] D.Singh, P.K.Yadawa and S.K.Sahu, Cryogenics 50 (2010) 476. [3] V. Bhalla, D.Singh and S.K.Jain, Int. J. Comput. Mat. Sc. Eng. 5 (2016) 1650012. [4] S. Kaushik, D. Singh and G. Mishra, Asian J. Chem. 24 (2012) 5655. [5] D. Chernyshov, A. Bosak, V. Dmitriev, Y. Filmchuk and H. Hagemann, Phys. Rev. B 78 (2008)172104. [6] H. Hagemann, S. Gomes, G. Renaudin and K. Yvon, J. Alloys Compd. 363 (2004) 126. [7] Y. Filinchuk, D. Chernyshov and V. Dmitriev, Z. Kristallogr. 223 (2008) 649. [8] Z.Xiao Dong, J.Z. Yi, Z. Bo, H. Z. Feng and H.Y. Qing, Chin. Phys. Lett. 28(2011)076201. [9] T. Ghellab, Z. Charifi, H. Baaziz, Ş. Uğur, G. Uğur and F. Soyalp, Phys. Scr. 91 (2016) 045804. [10] S. Bae, S. Gim, H. Kim and K. Hanna, Appl. Catal. B: Environm. 182 (2016) 541. [11] G. Renaudin, S. Gomes, H. Hagemann, L. Keller and K. Yvon, J Alloys Compd. 375 (2004) 98. [12] P. Vajeeston, P. Ravindran, A. Kjekshus and H. Fjellvåg, J Alloys Compd. 387 (2005) 97. [13] S. Orimo, Y. Nakamori, J.R. Eliseo, A. Zuttel and C. M. Jensen, Chem. Rev. 107 (2007) 4111. [14] A. Istek and E. Gonteki, J. Environ. Bio.7 (2009) 951. [15] R. S. Kumar and A.L. Cornelinus, Appl. Phys. Lett. 87 (2005) 261916. [16] E. Kim, R. Kumar, P. F. Weck, A. L. Cornelius, M. Nicol, S. C. Vogel, J. Zhang, M. Hartl, A.C. Stowe, L. Daemen and Y. Zhao, J. Phys. Chem. Lett. B 111 (2007) 13873. [17] K. Brugger, Phys. Rev. 133 (1964) A1611. [18] P.B. Ghate, Phy. Rev. 139 (1965) A1666 [19] S. Mori, Y. Hiki, J. Phys. Soc. Jpn. 45 (1975) 1449. [20] V. Bhalla, R. Kumar, C. Tripathy and D. Singh, Int. J. Mod. Phys. B 27 (2013) 1350116. [21] D. Singh, S. Kaushik, S. Tripathi, V. Bhalla and A. K. Gupta, Arab. J. Sci. Eng. 39 (2014) 485. [22] K. Brugger, Phys. Rev.137 (1965) 1826. [23] W. P. Mason, Physical Acoustics, vol. IIIB, Academic Press, New York, 1965. [24] M.P. Tosi, Solid State Physics, vol. 12, Academic Press, New York, 1965. [25] Y. Nakamori and S. Orimo, J. Alloy Compd.370(2004)271. [26] D. Singh, D.K. Pandey and P.K. Yadawa, Cent. Eur. J. Phys. 7 (2009) 198. [27] V. Bhalla, D. Singh, G. Mishra and M. Wan, J. Pure Appl. Ultrason. 38 (2016)23. [28] D. Singh, S. Kaushik, S.K. Pandey, G. Mishra and V. Bhalla, VNU J. Sc.: Math. Phys. 32(2016)43. [29] J.P.Watt and L. Peselnick, J.Appl. Phys. 51 (1980) 1525. [30] S.F.Pugh, Philos.Mag. 45 (1954) 823. [31] V. Bhalla, D. Singh and S.K. Jain, Int. J. Thermophys. 37(2016)33. [32] V. Bhalla, D. Singh, S.K. Jain and R. Kumar, Pramana- J. Phys. 86 (2016)135

    Design and Characteristic Investigation of Novel Dual Stator Pseudo-Pole Five-Phase Permanent Magnet Synchronous Generator for Wind Power Application

    Get PDF
    The main focus of this paper is to design and assess the characteristics investigation of Novel Dual Stator Pseudo-Pole Five Phase Permanent Magnet Synchronous Generator (NDSPPFP-PMSG) for wind power application. The proposed generator has a dual stator and two sets of five phase windings which enhance its power density and fault tolerant capability. The novelty of this generator is based on the fact that, eight magnetic poles are formed using only four poles of actual magnets on both the surfaces of the rotor. For the designing and optimal electromagnetic performance of the proposed generator, a Dynamic Magnetic Circuit Model (DMCM) is reported. To validate the results obtained from DMCM, Finite Element Method (FEM) has been opted owing to its high accuracy. For showing the performance superiority, the proposed generator is compared with two conventional generators namely, Dual Stator Embedded-Pole Five Phase (DSEPFP) and Single Stator Single Rotor Five Phase (SSSRFP) PMSG. To compare their performances, FEM results are considered. The electromagnetic performance namely, generated Electromotive Force(EMF), percentage(%) Total Harmonic Distortion(THD) of generated EMF, generated EMF vs speed, terminal voltage vs load current, electromagnetic torque developed on rotor vs time, %ripple content in the torque, and %efficiency vs load current are investigated for all the three generators. From these investigations, it is found that the power density (power to weight ratio) of the proposed generator is maximum.publishedVersio

    Developments Made for Mechanised Extraction of Locked-Up Coal Pillars in Indian Geomining Conditions

    Get PDF
    Bord and Pillar method of underground mining has been used extensively to develop Indian coal seams into pillars and galleries. This results in only 20–30% recovery of coal and rest coal remain locked up in developed pillars. Indian coalfields are famous in the world for its uniqueness and complexity of the geomining conditions which makes the extraction of the locked-up coal pillars a difficult and hazardous activity using different underground mining methods. Indian mining industry has introduced mechanisation since last 10 years to deal with the various underground rock mechanics issues in order to improve the efficiency and safety during recovery of locked-up coal pillars. But mere introduction of mechanisation did not solve all the rock mechanics problems due to requirement of indigenous design of different involved geotechnical elements for Indian geomining conditions. CSIR-CIMFR is a national research organisation engaged in improving conditions of underground coal mines. It has developed rock mechanics advances, namely, design of irregular shaped heightened rib/snook, roof bolt-based breaker-line support, warning limit of roof sagging, and cut-out distance for continuous miner-based mechanised depillaring. This chapter presents the developments made and highlights challenges to pursue future research studies for mechanised depillaring-based mass coal production from Indian underground mines

    Effectiveness of community-based health education and home support program to reduce blood pressure among patients with uncontrolled hypertension in Nepal : a cluster-randomized trial

    Get PDF
    Background Hypertension is a major global public health problem. Elevated blood pressure can cause cardiovascular and kidney diseases. We assessed the effectiveness of health education sessions and home support programs in reducing blood pressure among patients with uncontrolled hypertension in a suburban community of Nepal. Methods We conducted a community-based, open-level, parallel-group, cluster randomized controlled trial in Birendranagar municipality of Surkhet, Nepal. We randomly assigned four clusters (wards) into intervention and control arms. We provided four health education sessions, frequent home and usual care for intervention groups over six months. The participants of the control arm received only usual care from health facilities. The primary outcome of this study was the proportion of controlled systolic blood pressure (SBP). The analysis included all participants who completed follow-up at six months. Results 125 participants were assigned to either the intervention (n = 63) or the control (n = 62) group. Of them, 60 participants in each group completed six months follow-up. Theproportion of controlled SBP was significantly higher among the intervention participants compared to the control (58.3% vs. 40%). Odds ratio of this was 2.1 with 95% CI: 1.01–4.35 (p = 0.046) and that of controlled diastolic blood pressure (DBP) was 1.31 (0.63–2.72) (p = 0.600). The mean change (follow-up minus baseline) in SBP was significantly higher in the intervention than in the usual care (-18.7 mmHg vs. -11.2 mmHg, p = 0.041). Such mean change of DBP was also higher in the intervention (-10.95 mmHg vs. -5.53 mmHg, p = 0.065). The knowledge score on hypertension improved by 2.38 (SD 2.4) in the intervention arm, which was significantly different from that of the control group, 0.13 (1.8) (p<0.001). Conclusions Multiple health education sessions complemented by frequent household visits by health volunteers can effectively improve knowledge on hypertension and reduce blood pressure among uncontrolled hypertensive patients at the community level in Nepal

    Spatial, temporal, and demographic patterns in prevalence of chewing tobacco use in 204 countries and territories, 1990-2019 : a systematic analysis from the Global Burden of Disease Study 2019

    Get PDF
    Interpretation Chewing tobacco remains a substantial public health problem in several regions of the world, and predominantly in south Asia. We found little change in the prevalence of chewing tobacco use between 1990 and 2019, and that control efforts have had much larger effects on the prevalence of smoking tobacco use than on chewing tobacco use in some countries. Mitigating the health effects of chewing tobacco requires stronger regulations and policies that specifically target use of chewing tobacco, especially in countries with high prevalence. Findings In 2019, 273 center dot 9 million (95% uncertainty interval 258 center dot 5 to 290 center dot 9) people aged 15 years and older used chewing tobacco, and the global age-standardised prevalence of chewing tobacco use was 4 center dot 72% (4 center dot 46 to 5 center dot 01). 228 center dot 2 million (213 center dot 6 to 244 center dot 7; 83 center dot 29% [82 center dot 15 to 84 center dot 42]) chewing tobacco users lived in the south Asia region. Prevalence among young people aged 15-19 years was over 10% in seven locations in 2019. Although global agestandardised prevalence of smoking tobacco use decreased significantly between 1990 and 2019 (annualised rate of change: -1 center dot 21% [-1 center dot 26 to -1 center dot 16]), similar progress was not observed for chewing tobacco (0 center dot 46% [0 center dot 13 to 0 center dot 79]). Among the 12 highest prevalence countries (Bangladesh, Bhutan, Cambodia, India, Madagascar, Marshall Islands, Myanmar, Nepal, Pakistan, Palau, Sri Lanka, and Yemen), only Yemen had a significant decrease in the prevalence of chewing tobacco use, which was among males between 1990 and 2019 (-0 center dot 94% [-1 center dot 72 to -0 center dot 14]), compared with nine of 12 countries that had significant decreases in the prevalence of smoking tobacco. Among females, none of these 12 countries had significant decreases in prevalence of chewing tobacco use, whereas seven of 12 countries had a significant decrease in the prevalence of tobacco smoking use for the period. Summary Background Chewing tobacco and other types of smokeless tobacco use have had less attention from the global health community than smoked tobacco use. However, the practice is popular in many parts of the world and has been linked to several adverse health outcomes. Understanding trends in prevalence with age, over time, and by location and sex is important for policy setting and in relation to monitoring and assessing commitment to the WHO Framework Convention on Tobacco Control. Methods We estimated prevalence of chewing tobacco use as part of the Global Burden of Diseases, Injuries, and Risk Factors Study 2019 using a modelling strategy that used information on multiple types of smokeless tobacco products. We generated a time series of prevalence of chewing tobacco use among individuals aged 15 years and older from 1990 to 2019 in 204 countries and territories, including age-sex specific estimates. We also compared these trends to those of smoked tobacco over the same time period. Findings In 2019, 273 & middot;9 million (95% uncertainty interval 258 & middot;5 to 290 & middot;9) people aged 15 years and older used chewing tobacco, and the global age-standardised prevalence of chewing tobacco use was 4 & middot;72% (4 & middot;46 to 5 & middot;01). 228 & middot;2 million (213 & middot;6 to 244 & middot;7; 83 & middot;29% [82 & middot;15 to 84 & middot;42]) chewing tobacco users lived in the south Asia region. Prevalence among young people aged 15-19 years was over 10% in seven locations in 2019. Although global age standardised prevalence of smoking tobacco use decreased significantly between 1990 and 2019 (annualised rate of change: -1 & middot;21% [-1 & middot;26 to -1 & middot;16]), similar progress was not observed for chewing tobacco (0 & middot;46% [0 & middot;13 to 0 & middot;79]). Among the 12 highest prevalence countries (Bangladesh, Bhutan, Cambodia, India, Madagascar, Marshall Islands, Myanmar, Nepal, Pakistan, Palau, Sri Lanka, and Yemen), only Yemen had a significant decrease in the prevalence of chewing tobacco use, which was among males between 1990 and 2019 (-0 & middot;94% [-1 & middot;72 to -0 & middot;14]), compared with nine of 12 countries that had significant decreases in the prevalence of smoking tobacco. Among females, none of these 12 countries had significant decreases in prevalence of chewing tobacco use, whereas seven of 12 countries had a significant decrease in the prevalence of tobacco smoking use for the period. Interpretation Chewing tobacco remains a substantial public health problem in several regions of the world, and predominantly in south Asia. We found little change in the prevalence of chewing tobacco use between 1990 and 2019, and that control efforts have had much larger effects on the prevalence of smoking tobacco use than on chewing tobacco use in some countries. Mitigating the health effects of chewing tobacco requires stronger regulations and policies that specifically target use of chewing tobacco, especially in countries with high prevalence. Copyright (c) 2021 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license.Peer reviewe

    Spatial, temporal, and demographic patterns in prevalence of smoking tobacco use and attributable disease burden in 204 countries and territories, 1990-2019 : a systematic analysis from the Global Burden of Disease Study 2019

    Get PDF
    Background Ending the global tobacco epidemic is a defining challenge in global health. Timely and comprehensive estimates of the prevalence of smoking tobacco use and attributable disease burden are needed to guide tobacco control efforts nationally and globally. Methods We estimated the prevalence of smoking tobacco use and attributable disease burden for 204 countries and territories, by age and sex, from 1990 to 2019 as part of the Global Burden of Diseases, Injuries, and Risk Factors Study. We modelled multiple smoking-related indicators from 3625 nationally representative surveys. We completed systematic reviews and did Bayesian meta-regressions for 36 causally linked health outcomes to estimate non-linear dose-response risk curves for current and former smokers. We used a direct estimation approach to estimate attributable burden, providing more comprehensive estimates of the health effects of smoking than previously available. Findings Globally in 2019, 1.14 billion (95% uncertainty interval 1.13-1.16) individuals were current smokers, who consumed 7.41 trillion (7.11-7.74) cigarette-equivalents of tobacco in 2019. Although prevalence of smoking had decreased significantly since 1990 among both males (27.5% [26. 5-28.5] reduction) and females (37.7% [35.4-39.9] reduction) aged 15 years and older, population growth has led to a significant increase in the total number of smokers from 0.99 billion (0.98-1.00) in 1990. Globally in 2019, smoking tobacco use accounted for 7.69 million (7.16-8.20) deaths and 200 million (185-214) disability-adjusted life-years, and was the leading risk factor for death among males (20.2% [19.3-21.1] of male deaths). 6.68 million [86.9%] of 7.69 million deaths attributable to smoking tobacco use were among current smokers. Interpretation In the absence of intervention, the annual toll of 7.69 million deaths and 200 million disability-adjusted life-years attributable to smoking will increase over the coming decades. Substantial progress in reducing the prevalence of smoking tobacco use has been observed in countries from all regions and at all stages of development, but a large implementation gap remains for tobacco control. Countries have a dear and urgent opportunity to pass strong, evidence-based policies to accelerate reductions in the prevalence of smoking and reap massive health benefits for their citizens. Copyright (C) 2021 The Author(s). Published by Elsevier Ltd.Peer reviewe

    Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background: In an era of shifting global agendas and expanded emphasis on non-communicable diseases and injuries along with communicable diseases, sound evidence on trends by cause at the national level is essential. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) provides a systematic scientific assessment of published, publicly available, and contributed data on incidence, prevalence, and mortality for a mutually exclusive and collectively exhaustive list of diseases and injuries. Methods: GBD estimates incidence, prevalence, mortality, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) due to 369 diseases and injuries, for two sexes, and for 204 countries and territories. Input data were extracted from censuses, household surveys, civil registration and vital statistics, disease registries, health service use, air pollution monitors, satellite imaging, disease notifications, and other sources. Cause-specific death rates and cause fractions were calculated using the Cause of Death Ensemble model and spatiotemporal Gaussian process regression. Cause-specific deaths were adjusted to match the total all-cause deaths calculated as part of the GBD population, fertility, and mortality estimates. Deaths were multiplied by standard life expectancy at each age to calculate YLLs. A Bayesian meta-regression modelling tool, DisMod-MR 2.1, was used to ensure consistency between incidence, prevalence, remission, excess mortality, and cause-specific mortality for most causes. Prevalence estimates were multiplied by disability weights for mutually exclusive sequelae of diseases and injuries to calculate YLDs. We considered results in the context of the Socio-demographic Index (SDI), a composite indicator of income per capita, years of schooling, and fertility rate in females younger than 25 years. Uncertainty intervals (UIs) were generated for every metric using the 25th and 975th ordered 1000 draw values of the posterior distribution. Findings: Global health has steadily improved over the past 30 years as measured by age-standardised DALY rates. After taking into account population growth and ageing, the absolute number of DALYs has remained stable. Since 2010, the pace of decline in global age-standardised DALY rates has accelerated in age groups younger than 50 years compared with the 1990–2010 time period, with the greatest annualised rate of decline occurring in the 0–9-year age group. Six infectious diseases were among the top ten causes of DALYs in children younger than 10 years in 2019: lower respiratory infections (ranked second), diarrhoeal diseases (third), malaria (fifth), meningitis (sixth), whooping cough (ninth), and sexually transmitted infections (which, in this age group, is fully accounted for by congenital syphilis; ranked tenth). In adolescents aged 10–24 years, three injury causes were among the top causes of DALYs: road injuries (ranked first), self-harm (third), and interpersonal violence (fifth). Five of the causes that were in the top ten for ages 10–24 years were also in the top ten in the 25–49-year age group: road injuries (ranked first), HIV/AIDS (second), low back pain (fourth), headache disorders (fifth), and depressive disorders (sixth). In 2019, ischaemic heart disease and stroke were the top-ranked causes of DALYs in both the 50–74-year and 75-years-and-older age groups. Since 1990, there has been a marked shift towards a greater proportion of burden due to YLDs from non-communicable diseases and injuries. In 2019, there were 11 countries where non-communicable disease and injury YLDs constituted more than half of all disease burden. Decreases in age-standardised DALY rates have accelerated over the past decade in countries at the lower end of the SDI range, while improvements have started to stagnate or even reverse in countries with higher SDI. Interpretation: As disability becomes an increasingly large component of disease burden and a larger component of health expenditure, greater research and developm nt investment is needed to identify new, more effective intervention strategies. With a rapidly ageing global population, the demands on health services to deal with disabling outcomes, which increase with age, will require policy makers to anticipate these changes. The mix of universal and more geographically specific influences on health reinforces the need for regular reporting on population health in detail and by underlying cause to help decision makers to identify success stories of disease control to emulate, as well as opportunities to improve. Funding: Bill & Melinda Gates Foundation. © 2020 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licens

    Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life Years for 29 Cancer Groups From 2010 to 2019: A Systematic Analysis for the Global Burden of Disease Study 2019.

    Get PDF
    The Global Burden of Diseases, Injuries, and Risk Factors Study 2019 (GBD 2019) provided systematic estimates of incidence, morbidity, and mortality to inform local and international efforts toward reducing cancer burden. To estimate cancer burden and trends globally for 204 countries and territories and by Sociodemographic Index (SDI) quintiles from 2010 to 2019. The GBD 2019 estimation methods were used to describe cancer incidence, mortality, years lived with disability, years of life lost, and disability-adjusted life years (DALYs) in 2019 and over the past decade. Estimates are also provided by quintiles of the SDI, a composite measure of educational attainment, income per capita, and total fertility rate for those younger than 25 years. Estimates include 95% uncertainty intervals (UIs). In 2019, there were an estimated 23.6 million (95% UI, 22.2-24.9 million) new cancer cases (17.2 million when excluding nonmelanoma skin cancer) and 10.0 million (95% UI, 9.36-10.6 million) cancer deaths globally, with an estimated 250 million (235-264 million) DALYs due to cancer. Since 2010, these represented a 26.3% (95% UI, 20.3%-32.3%) increase in new cases, a 20.9% (95% UI, 14.2%-27.6%) increase in deaths, and a 16.0% (95% UI, 9.3%-22.8%) increase in DALYs. Among 22 groups of diseases and injuries in the GBD 2019 study, cancer was second only to cardiovascular diseases for the number of deaths, years of life lost, and DALYs globally in 2019. Cancer burden differed across SDI quintiles. The proportion of years lived with disability that contributed to DALYs increased with SDI, ranging from 1.4% (1.1%-1.8%) in the low SDI quintile to 5.7% (4.2%-7.1%) in the high SDI quintile. While the high SDI quintile had the highest number of new cases in 2019, the middle SDI quintile had the highest number of cancer deaths and DALYs. From 2010 to 2019, the largest percentage increase in the numbers of cases and deaths occurred in the low and low-middle SDI quintiles. The results of this systematic analysis suggest that the global burden of cancer is substantial and growing, with burden differing by SDI. These results provide comprehensive and comparable estimates that can potentially inform efforts toward equitable cancer control around the world.Funding/Support: The Institute for Health Metrics and Evaluation received funding from the Bill & Melinda Gates Foundation and the American Lebanese Syrian Associated Charities. Dr Aljunid acknowledges the Department of Health Policy and Management of Kuwait University and the International Centre for Casemix and Clinical Coding, National University of Malaysia for the approval and support to participate in this research project. Dr Bhaskar acknowledges institutional support from the NSW Ministry of Health and NSW Health Pathology. Dr Bärnighausen was supported by the Alexander von Humboldt Foundation through the Alexander von Humboldt Professor award, which is funded by the German Federal Ministry of Education and Research. Dr Braithwaite acknowledges funding from the National Institutes of Health/ National Cancer Institute. Dr Conde acknowledges financial support from the European Research Council ERC Starting Grant agreement No 848325. Dr Costa acknowledges her grant (SFRH/BHD/110001/2015), received by Portuguese national funds through Fundação para a Ciência e Tecnologia, IP under the Norma Transitória grant DL57/2016/CP1334/CT0006. Dr Ghith acknowledges support from a grant from Novo Nordisk Foundation (NNF16OC0021856). Dr Glasbey is supported by a National Institute of Health Research Doctoral Research Fellowship. Dr Vivek Kumar Gupta acknowledges funding support from National Health and Medical Research Council Australia. Dr Haque thanks Jazan University, Saudi Arabia for providing access to the Saudi Digital Library for this research study. Drs Herteliu, Pana, and Ausloos are partially supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CNDS-UEFISCDI, project number PN-III-P4-ID-PCCF-2016-0084. Dr Hugo received support from the Higher Education Improvement Coordination of the Brazilian Ministry of Education for a sabbatical period at the Institute for Health Metrics and Evaluation, between September 2019 and August 2020. Dr Sheikh Mohammed Shariful Islam acknowledges funding by a National Heart Foundation of Australia Fellowship and National Health and Medical Research Council Emerging Leadership Fellowship. Dr Jakovljevic acknowledges support through grant OI 175014 of the Ministry of Education Science and Technological Development of the Republic of Serbia. Dr Katikireddi acknowledges funding from a NHS Research Scotland Senior Clinical Fellowship (SCAF/15/02), the Medical Research Council (MC_UU_00022/2), and the Scottish Government Chief Scientist Office (SPHSU17). Dr Md Nuruzzaman Khan acknowledges the support of Jatiya Kabi Kazi Nazrul Islam University, Bangladesh. Dr Yun Jin Kim was supported by the Research Management Centre, Xiamen University Malaysia (XMUMRF/2020-C6/ITCM/0004). Dr Koulmane Laxminarayana acknowledges institutional support from Manipal Academy of Higher Education. Dr Landires is a member of the Sistema Nacional de Investigación, which is supported by Panama’s Secretaría Nacional de Ciencia, Tecnología e Innovación. Dr Loureiro was supported by national funds through Fundação para a Ciência e Tecnologia under the Scientific Employment Stimulus–Institutional Call (CEECINST/00049/2018). Dr Molokhia is supported by the National Institute for Health Research Biomedical Research Center at Guy’s and St Thomas’ National Health Service Foundation Trust and King’s College London. Dr Moosavi appreciates NIGEB's support. Dr Pati acknowledges support from the SIAN Institute, Association for Biodiversity Conservation & Research. Dr Rakovac acknowledges a grant from the government of the Russian Federation in the context of World Health Organization Noncommunicable Diseases Office. Dr Samy was supported by a fellowship from the Egyptian Fulbright Mission Program. Dr Sheikh acknowledges support from Health Data Research UK. Drs Adithi Shetty and Unnikrishnan acknowledge support given by Kasturba Medical College, Mangalore, Manipal Academy of Higher Education. Dr Pavanchand H. Shetty acknowledges Manipal Academy of Higher Education for their research support. Dr Diego Augusto Santos Silva was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil Finance Code 001 and is supported in part by CNPq (302028/2018-8). Dr Zhu acknowledges the Cancer Prevention and Research Institute of Texas grant RP210042
    corecore