151 research outputs found

    Recombinant biologic products versus nutraceuticals from plants - a regulatory choice?

    Get PDF
    Biotechnology has transformed the potential for plants to be a manufacturing source of pharmaceutical compounds. Now, with transgenic and transient expression techniques, virtually any biologic, including vaccines and therapeutics, could be manufactured in plants. However, uncertainty over the regulatory path for such new pharmaceuticals has been a deterrent. Consideration has been given to using alternative regulatory paths, including those for nutraceuticals or cosmetic agents. This review will consider these possibilities, and discuss the difficulties in establishing regulatory guidelines for new pharmaceutical manufacturing technologies

    A Plant-Derived Recombinant Human Glucocerebrosidase Enzyme—A Preclinical and Phase I Investigation

    Get PDF
    Gaucher disease is a progressive lysosomal storage disorder caused by the deficiency of glucocerebrosidase leading to the dysfunction in multiple organ systems. Intravenous enzyme replacement is the accepted standard of treatment. In the current report, we evaluate the safety and pharmacokinetics of a novel human recombinant glucocerebrosidase enzyme expressed in transformed plant cells (prGCD), administered to primates and human subjects. Short term (28 days) and long term (9 months) repeated injections with a standard dose of 60 Units/kg and a high dose of 300 Units/kg were administered to monkeys (n = 4/sex/dose). Neither clinical drug-related adverse effects nor neutralizing antibodies were detected in the animals. In a phase I clinical trial, six healthy volunteers were treated by intravenous infusions with escalating single doses of prGCD. Doses of up to 60 Units/kg were administered at weekly intervals. prGCD infusions were very well tolerated. Anti-prGCD antibodies were not detected. The pharmacokinetic profile of the prGCD revealed a prolonged half-life compared to imiglucerase, the commercial enzyme that is manufactured in a costly mammalian cell system. These studies demonstrate the safety and lack of immunogenicity of prGCD. Following these encouraging results, a pivotal phase III clinical trial for prGCD was FDA approved and is currently ongoing.ClinicalTrials.gov NCT00258778

    Lysosomal and vacuolar sorting: not so different after all!

    Get PDF
    Soluble hydrolases represent the main proteins of lysosomes and vacuoles and are essential to sustain the lytic properties of these organelles typical for the eukaryotic organisms. The sorting of these proteins from ER residents and secreted proteins is controlled by highly specific receptors to avoid mislocalization and subsequent cellular damage. After binding their soluble cargo in the early stage of the secretory pathway, receptors rely on their own sorting signals to reach their target organelles for ligand delivery, and to recycle back for a new round of cargo recognition. Although signals in cargo and receptor molecules have been studied in human, yeast and plant model systems, common denominators and specific examples of diversification have not been systematically explored. This review aims to fill this niche by comparing the structure and the function of lysosomal/vacuolar sorting receptors (VSRs) from these three organisms

    Improved management of lysosomal glucosylceramide levels in a mouse model of type 1 Gaucher disease using enzyme and substrate reduction therapy

    Full text link
    Gaucher disease is caused by a deficiency of the lysosomal enzyme glucocerebrosidase (acid βâ glucosidase), with consequent cellular accumulation of glucosylceramide (GLâ 1). The disease is managed by intravenous administrations of recombinant glucocerebrosidase (imiglucerase), although symptomatic patients with mild to moderate type 1 Gaucher disease for whom enzyme replacement therapy (ERT) is not an option may also be treated by substrate reduction therapy (SRT) with miglustat. To determine whether the sequential use of both ERT and SRT may provide additional benefits, we compared the relative pharmacodynamic efficacies of separate and sequential therapies in a murine model of Gaucher disease (D409V/null). As expected, ERT with recombinant glucocerebrosidase was effective in reducing the burden of GLâ 1 storage in the liver, spleen, and lung of 3â monthâ old Gaucher mice. SRT using a novel inhibitor of glucosylceramide synthase (Genzâ 112638) was also effective, albeit to a lesser degree than ERT. Animals administered recombinant glucocerebrosidase and then Genzâ 112638 showed the lowest levels of GLâ 1 in all the visceral organs and a reduced number of Gaucher cells in the liver. This was likely because the additional deployment of SRT following enzyme therapy slowed the rate of reaccumulation of GLâ 1 in the affected organs. Hence, in patients whose disease has been stabilized by intravenously administered recombinant glucocerebrosidase, orally administered SRT with Genzâ 112638 could potentially be used as a convenient maintenance therapy. In patients naïve to treatment, ERT followed by SRT could potentially accelerate clearance of the offending substrate.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/147062/1/jimd0281.pd

    Biomanufacturing of protective antibodies and other therapeutics in edible plant tissues for oral applications

    Get PDF
    [EN] Although plant expression systems used for production of therapeutic proteins have the advantage of being scalable at a low price, the downstream processing necessary to obtain pure therapeutic molecules is as expensive as for the traditional Chinese hamster ovary (CHO) platforms. However, when edible plant tissues (EPTs) are used, there is no need for exhaustive purification, because they can be delivered orally as partially purified formulations that are safe for consumption. This economic benefit is especially interesting when high doses of recombinant proteins are required throughout the treatment/prophylaxis period, as is the case for antibodies used for oral passive immunization (OPI). The secretory IgA (SIgA) antibodies, which are highly abundant in the digestive tract and mucosal secretions, and thus the first choice for OPI, have only been successfully produced in plant expression systems. Here, we cover most of the up-todate examples of EPT-produced pharmaceuticals, including two examples of SIgA aimed at oral delivery. We describe the benefits and drawbacks of delivering partially purified formulations and discuss a number of practical considerations and criteria to take into account when using plant expression systems, such as subcellular targeting, protein degradation, glycosylation patterns and downstream strategies, all crucial for improved yield, high quality and low cost of the final product.The authors would like to thank Annick Bleys for assistance with the manuscript preparation. P.J. would like to express gratitude towards the Spanish Ministry of Economy and Competiveness for her FPU fellowship and towards the International Society for Plant Molecular Farming for their generous bursaries for attending the PBVAB 2015. This work was supported by grants from Research Foundation Flanders (FWO project G0C9714N), from the European Commission (H2020-MSCA-IF-2014 Proposal 658701-ImmunoFarm) and from the Spanish Ministry of Economy and Competiveness (Plan Nacional I+D Grant BIO2013-42193R).Juarez, P.; Virdi, V.; Depicker, A.; Orzáez Calatayud, DV. (2016). Biomanufacturing of protective antibodies and other therapeutics in edible plant tissues for oral applications. Plant Biotechnology Journal. 14(9):1791-1799. https://doi.org/10.1111/pbi.12541S1791179914

    Herbicide-Resistant Field Crops

    Get PDF
    This chapter reviews information about how crop plants resist herbicides and how resistance is selected for in plants and surveys specific herbicide-resistant crops by chemical family. The discussion in the chapter includes HRCs derived from both traditional and biotechnological selection methodologies. Plants avoid the effects of herbicides they encounter by several different mechanisms. These mechanisms can be grouped into two categories: those that exclude the herbicide molecule from the site in the plant where they induce the toxic response and those that render the specific site of herbicide action resistant to the chemical. The chapter presents herbicide-resistant crops by the herbicide chemical family—such as, triazine, acetolactate synthatase, acetyl-CoA carboxylase, glyphosate, bromoxynil, phenoxycarboxylic acids, and glufosinate. Resistant crops are listed in the chapter regardless of whether they have been commercialized or were developed for experimental purposes only, and are provided regardless of their “success” as resistant plants
    corecore