1,053 research outputs found

    Floating total knee: periprosthetic fracture of the distal femur combined with tibial plateau fracture in primary total knee arthroplasty

    Get PDF
    We are currently witnessing an increasing number of complications associated with arthroplasty, both due to its greater prevalence, whether primary or revision, and to the population's longer average life expectancy. Periprosthetic fractures associated with a floating knee, in the context of total knee arthroplasty, are rare and their treatment is challenging. We present a case of ipsilateral periprosthetic fracture of the distal femur combined with fracture of the tibial plate in total knee arthroplasty. The 80-year-old female patient was admitted to the emergency department after falling from her own height at home. She reported diffuse pain in her right knee and associated functional incapacity. The limb was stabilized and immobilized in a posterior long leg splint. Initial X-rays showed an ipsilateral periprosthetic fracture of the distal femur and medial tibial plate. The patient's only previous surgery was a total right knee arthroplasty performed in 2020. She underwent surgical treatment with osteosynthesis of the distal femur with a locked anatomical plate and arthroplasty revision of the tibial component. Periprosthetic fractures associated with knee arthroplasty typically involve the distal femur. Fractures involving the tibia are rare and usually occur in the medial tibial plate, in the presence of detachment of the tibial component. There is little published literature on this type of fracture in elderly patients. Periprosthetic fractures in total knee arthroplasty require individualized and planned treatment according to the personality of each fracture and the existence or not of prosthetic detachment

    Probing the Rhipicephalus bursa sialomes in potential anti-tick vaccine candidates : a reverse vaccinology approach

    Get PDF
    In the wake of the ‘omics’ explosion of data, reverse vaccinology approaches are being applied more readily as an alternative for the discovery of candidates for next generation diagnostics and vaccines. Promising protective antigens for the control of ticks and tick-borne diseases can be discovered by mining available omics data for immunogenic epitopes. The present study aims to explore the previously obtained Rhipicephalus bursa sialotranscriptome during both feeding and Babesia infection, to select antigenic targets that are either membrane-associated or a secreted protein, as well as unique to the ectoparasite and not present in the mammalian host. Further, they should be capable of stimulating T and B cells for a potential robust immune response, and be non-allergenic or toxic to the host. From the R. bursa transcriptome, 5706 and 3025 proteins were identified as belonging to the surfaceome and secretome, respectively. Following a reverse genetics immunoinformatics pipeline, nine preferred candidates, consisting of one transmembrane-related and eight secreted proteins, were identified. These candidates showed a higher predicted antigenicity than the Bm86 antigen, with no homology to mammalian hosts and exposed regions. Only four were functionally annotated and selected for further in silico analysis, which examined their protein structure, surface accessibility, flexibility, hydrophobicity, and putative linear B and T-cell epitopes. Regions with overlapping coincident epitopes groups (CEGs) were evaluated to select peptides that were further analyzed for their physicochemical characteristics, potential allergenicity, toxicity, solubility, and potential propensity for crystallization. Following these procedures, a set of three peptides from the three R. bursa proteins were selected. In silico results indicate that the designed epitopes could stimulate a protective and long-lasting immune response against those tick proteins, reflecting its potential as anti-tick vaccines The immunogenicity of these peptides was evaluated in a pilot immunization study followed by tick feeding to evaluate its impact on tick behavior and pathogen transmission. Combining in silico methods with in vivo immunogenicity evaluation enabled the screening of vaccine candidates prior to expensive infestation studies on the definitive ovine host animals.Spreadsheet S1 – SurfaceomeSpreadsheet S2 – SecretomeSpreadsheet S3 – MARVELSpreadsheet S4 – EVASINSpreadsheet S5 - RICINFundação para a Ciência e Tecnologia (FCT)http://www.mdpi.com/journal/biomedicinespm2021BiochemistryForestry and Agricultural Biotechnology Institute (FABI)GeneticsMicrobiology and Plant PathologyPlant Production and Soil Scienc

    Implementation and Performance of the High-Level Trigger electron and photon selection for the ATLAS experiment at the LHC

    Get PDF
    The ATLAS three-tier trigger system faces the challenge to reduce the incoming rate of 40 MHz to ⟠200 Hz. It consists of hardware based Level-1, and a software based High-Level Trigger (HLT). In this paper an overview of the selection algorithms for electrons and photons will be given as well as the expected performance. The electron and photon trigger menu and the strategy for the initial phase of LHC exploitation

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Search for displaced vertices arising from decays of new heavy particles in 7 TeV pp collisions at ATLAS

    Get PDF
    We present the results of a search for new, heavy particles that decay at a significant distance from their production point into a final state containing charged hadrons in association with a high-momentum muon. The search is conducted in a pp-collision data sample with a center-of-mass energy of 7 TeV and an integrated luminosity of 33 pb^-1 collected in 2010 by the ATLAS detector operating at the Large Hadron Collider. Production of such particles is expected in various scenarios of physics beyond the standard model. We observe no signal and place limits on the production cross-section of supersymmetric particles in an R-parity-violating scenario as a function of the neutralino lifetime. Limits are presented for different squark and neutralino masses, enabling extension of the limits to a variety of other models.Comment: 8 pages plus author list (20 pages total), 8 figures, 1 table, final version to appear in Physics Letters

    Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions at sqrt(s) = 7 TeV with the ATLAS experiment

    Get PDF
    This paper describes an analysis of the angular distribution of W->enu and W->munu decays, using data from pp collisions at sqrt(s) = 7 TeV recorded with the ATLAS detector at the LHC in 2010, corresponding to an integrated luminosity of about 35 pb^-1. Using the decay lepton transverse momentum and the missing transverse energy, the W decay angular distribution projected onto the transverse plane is obtained and analysed in terms of helicity fractions f0, fL and fR over two ranges of W transverse momentum (ptw): 35 < ptw < 50 GeV and ptw > 50 GeV. Good agreement is found with theoretical predictions. For ptw > 50 GeV, the values of f0 and fL-fR, averaged over charge and lepton flavour, are measured to be : f0 = 0.127 +/- 0.030 +/- 0.108 and fL-fR = 0.252 +/- 0.017 +/- 0.030, where the first uncertainties are statistical, and the second include all systematic effects.Comment: 19 pages plus author list (34 pages total), 9 figures, 11 tables, revised author list, matches European Journal of Physics C versio

    Observation of a new chi_b state in radiative transitions to Upsilon(1S) and Upsilon(2S) at ATLAS

    Get PDF
    The chi_b(nP) quarkonium states are produced in proton-proton collisions at the Large Hadron Collider (LHC) at sqrt(s) = 7 TeV and recorded by the ATLAS detector. Using a data sample corresponding to an integrated luminosity of 4.4 fb^-1, these states are reconstructed through their radiative decays to Upsilon(1S,2S) with Upsilon->mu+mu-. In addition to the mass peaks corresponding to the decay modes chi_b(1P,2P)->Upsilon(1S)gamma, a new structure centered at a mass of 10.530+/-0.005 (stat.)+/-0.009 (syst.) GeV is also observed, in both the Upsilon(1S)gamma and Upsilon(2S)gamma decay modes. This is interpreted as the chi_b(3P) system.Comment: 5 pages plus author list (18 pages total), 2 figures, 1 table, corrected author list, matches final version in Physical Review Letter

    Standalone vertex nding in the ATLAS muon spectrometer

    Get PDF
    A dedicated reconstruction algorithm to find decay vertices in the ATLAS muon spectrometer is presented. The algorithm searches the region just upstream of or inside the muon spectrometer volume for multi-particle vertices that originate from the decay of particles with long decay paths. The performance of the algorithm is evaluated using both a sample of simulated Higgs boson events, in which the Higgs boson decays to long-lived neutral particles that in turn decay to bbar b final states, and pp collision data at √s = 7 TeV collected with the ATLAS detector at the LHC during 2011
    • …
    corecore