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Abstract: In the wake of the ‘omics’ explosion of data, reverse vaccinology approaches are being
applied more readily as an alternative for the discovery of candidates for next generation diagnostics
and vaccines. Promising protective antigens for the control of ticks and tick-borne diseases can be
discovered by mining available omics data for immunogenic epitopes. The present study aims to ex-
plore the previously obtained Rhipicephalus bursa sialotranscriptome during both feeding and Babesia
infection, to select antigenic targets that are either membrane-associated or a secreted protein, as well
as unique to the ectoparasite and not present in the mammalian host. Further, they should be capable
of stimulating T and B cells for a potential robust immune response, and be non-allergenic or toxic to
the host. From the R. bursa transcriptome, 5706 and 3025 proteins were identified as belonging to the
surfaceome and secretome, respectively. Following a reverse genetics immunoinformatics pipeline,
nine preferred candidates, consisting of one transmembrane-related and eight secreted proteins,
were identified. These candidates showed a higher predicted antigenicity than the Bm86 antigen,
with no homology to mammalian hosts and exposed regions. Only four were functionally annotated
and selected for further in silico analysis, which examined their protein structure, surface accessibility,
flexibility, hydrophobicity, and putative linear B and T-cell epitopes. Regions with overlapping coin-
cident epitopes groups (CEGs) were evaluated to select peptides that were further analyzed for their
physicochemical characteristics, potential allergenicity, toxicity, solubility, and potential propensity
for crystallization. Following these procedures, a set of three peptides from the three R. bursa proteins
were selected. In silico results indicate that the designed epitopes could stimulate a protective and
long-lasting immune response against those tick proteins, reflecting its potential as anti-tick vaccines.
The immunogenicity of these peptides was evaluated in a pilot immunization study followed by
tick feeding to evaluate its impact on tick behavior and pathogen transmission. Combining in silico
methods with in vivo immunogenicity evaluation enabled the screening of vaccine candidates prior
to expensive infestation studies on the definitive ovine host animals.

Keywords: tick; vaccine; sialotranscriptome; reverse vaccinology; immunoinformatics

1. Introduction

Tick and tick-borne diseases are an increasing threat for both human and animal
health [1]. The multi-host hard tick species, Rhipicephalus bursa, has a wide distribution
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throughout the Mediterranean basin and transmits several pathogens of economic impor-
tance in ungulates (i.e., cattle, sheep, and goats) from several genera, including Babesia,
Anaplasma, Theileria, Rickettsia, and Coxiella [2]. Recently, R. bursa has been implicated in
the transmission of several zoonotic pathogenic agents highlighting its impact in human
health [3]. This tick is the primary vector of Babesia ovis, a highly pathogenic hemoparasite
in small ruminants, recognized for having an important socioeconomic impact, primarily in
low income countries, related with production losses and costs of the animal treatment [4].
Moreover, B. ovis is present in all developmental stages of R. bursa species since it has the
capacity for transovarial and transstadial transmission [5].

The (re)emergence of ticks and tick-borne diseases and the lack of safer and more effective
control strategies have reinvigorated research efforts by the scientific community to explore
ways to control ticks and, subsequently, their associated diseases. Biological control [6],
acaricides [7,8], resistant production breeds [9], and vaccines [10–12] are being proposed
and readily tested for tick population control. Vaccines are one of the most environmentally
friendly pharmaceutical products [13], as well as effective prophylactic treatment [14],
used in infectious disease control. In tick research, the development and commercialization
of novel vaccines [15] have been hindered by different factors [16,17] such as the lack of
knowledge regarding tick-host interactions and tick biology. Particularly, transmission-
blocking vaccines are considered very attractive tools for vector-borne disease control since
they can affect the vector’s biology and behavior, thereby interfering with its capacity
to transmit diseases [18–20]. Traditionally, vaccines confer protection by stimulating a
humoral response mediated by antibodies [21]. These antibodies are involved in recognition
and binding of the foreign antigen resulting in neutralization, agglutination, precipitation,
as well as complement activation using chemoattractants to facilitate inflammation [22].

To date only one subunit anti-tick vaccine has been commercialized, based on a
surface exposed 89 kDa glycosylphosphatidylinositol (GPI)-linked glycoprotein, Bm86,
originally found in Rhipicephalus microplus midgut tissues [23,24]. Vaccination with this
antigen can induce a protective immune response mediated mainly by host humoral
response and the complement system, damaging the tick midgut wall and leading to
a decrease in tick survival and diminished capacity to produce viable progeny [25–27];
however, with a efficacy depending on the tick species and strains [11].

Thus, a panoply of targets must be studied and tested to increase the current antigen
repertoire for use in novel anti-tick vaccines and improve their efficiency. Immunoinformatics-
based approaches have been recently applied to catalogue potential protective antigens,
reducing cost and time in anti-tick vaccine development [25,28–30]. Reverse vaccinol-
ogy (RV) is an approach exploring available omics data and in silico tools to select a
great amount of predicted antigenic proteins potentially capable of inducing a protec-
tive immune response in vivo [21,31–34]. A combination of such techniques is steadily
being implemented to develop novel and effective vaccines against several infectious
diseases, including parasitosis [35–40]. These approaches have been already used on
tissue-specific tick omics data in the pursuit of potential protective candidates [26,30,41–43].
Immunoinformatics focusing tick sialomics data are of particular interest since tick secreted
salivary proteins can closely influence the host immune response at the vector feeding
site, as well as enable pathogen dissemination and multiplication inside the host [44–48].
Even though functional redundancy is expected in tick salivary gland proteins [49],
transcriptomic and proteomic studies of this tissue represents a collection of pharmaco-
active molecules with therapeutic exploitation potential [48]. Moreover, peptide and
multi-epitope constructs can be designed to synergize the impact of recognizing multiple
antigens [50] and overcoming functional redundancy, as well as minimizing the side-effects
caused by the immunization of an entire protein [51].

Regarding topology, proteins that contain extracellularly exposed portions on the cell
outer membranes (surfaceome) or that are secreted into the extracellular space (secretome)
are considered suitable antigens for vaccine development due to better accessibility to the
immune system [26,32], as opposed to cytoplasmic proteins that can rather be considered
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for small molecule drug development [26,32,52]. Targeting a membrane-related protein
may also interfere with the tick capacity to transmit or acquire pathogens if produced
antibodies directly block the parasite from crossing the midgut or salivary glands barriers,
as observed in other vectors, such as mosquitoes [18,53]. The tick secretome represents
a chemical pool, critical for tick feeding and life cycle, as well as pathogen transmission.
Thus, tick salivary secretions could be the core for the development of novel therapeutics
for host disorders [48,54] or anti-tick and transmission blocking vaccines [55] as in the case
of Salp15 and Borrelia burgdorferi transmission by Ixodes ticks [56].

Therefore, this study aims to scrutinize available high-throughput omics data, using a
RV approach, focusing on the Rhipicephalus bursa-Babesia ovis (vector-pathogen) interface in
order to identify antigenic peptides from tick sialoproteins that could be promising candi-
dates for future vaccination trials. For this, computational methods have been combined to
predict B and T cell epitopes, as well as its topology, hydrophobicity, polarity, solubility,
and other physicochemical aspects [57], in order to select candidates comprising all the
requirements for a suitable vaccine or even for disease diagnosis and disease therapy [58].
Such exposed antigens could become targets for peptide-based therapeutics if they present
high antigenicity and no toxicity to the host.

2. Material and Methods
2.1. Rhipicephalus bursa Sialotranscriptomes: New Assembly

The data analyzed was obtained previously by Antunes et al. [59]. Briefly, R. bursa
female ticks were obtained under different conditions: uninfected-unfed ticks, uninfected-
fed ticks, and B. ovis infected-fed ticks. Salivary glands were isolated, RNA extracted,
and two replicates per condition were used for RNA sequencing in a HiSeq 2500 sequencer
(Illumina, CA, USA) after quality assessment and library construction. Cluster generation
was performed, followed by 2 × 100 cycle sequencing reads separated by a paired-end
turnaround. The raw fastq files deposited at the National Center for Biotechnology Informa-
tion (NCBI) under the accession numbers SRR4428986, SRR4428987 and SRR4428988 [59]
were re-analyzed under the present study. For this, sequence reads were quality filtered and
trimmed using Trimmomatic [60] and the transcriptomes reassembled using Trinity [61].
To evaluate the completeness of the assemblies, BUSCO [62] analyses were performed
using the Arthropoda dataset as a reference.

2.2. In Silico Characterization of Rhipicephalus bursa Protein Coding Sequences

A filtering process was performed using various bioinformatics tools to identify
protein coding open-reading frames, topological features, antigenic regions, and annotate
potential candidates. See Figure 1 for the experimental outline.

Open reading frames (ORF) in transcriptome contigs were predicted using TransDe-
coder [62]. InterProScan [63] was used to classify the predicted protein sequences in terms
of signal peptide and transmembrane regions with SignalP (v. 4.0) [64] and TMHMM
(v. 2.0) [65,66], respectively. Redundant (or highly similar; identity >90%) and closely
related protein families were analyzed with CD-HIT v4.8.1 [67], and only the representative
sequences were used in subsequent analyses.

The online server Vaxijen (v. 2.0) was used to select the antigenic proteins [68].
Based on the immunogenicity of the only commercially available anti-tick vaccine, Bm86,
a threshold of 0.7 was applied [30].

Then, to select antigens that differ from possible vertebrates used in future vaccination
trials, the Geneious R8.1 software was used to search for homology between the R. bursa
dataset and the mammalian hosts amino acid databases (Mus musculus, Oryctolagus cunicu-
lus and Ovis aries).

Next, CELLO (v. 2.5) [69], WoLF PSORT [70], and BUSCA [70] online servers were used
to select the surfaceome and secretome using the names “plasma membrane” and “extracel-
lular” as filters. SignalP (v. 5.0) [71], big-PI [72], GPI-SOM [73], Phobius [74], TMHMM (v. 2.0),
CCTOP (v. 1.0) [75], and SACS TMHMM [75] programs were used for the selection
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of membrane-related antigens with exposed regions (“outside” or “non-cytoplasmatic”,
with regions greater than 15 a.a.) without signal peptide neither glycosylphosphatidylinos-
itol (GPI)-anchor in all the in silico results.

For the selection of secreted antigens, the same approach was used including proteins
with signal peptide but no GPI-anchor in all the in silico results.

Finally, the selected R. bursa proteins were functionally annotated by BLASTp (https:
//blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins, accessed on 30 October 2019) against
the NCBI non-redundant (nr) and Arthropoda (6656) databases using the PAM70 matrix
(E value < 1×10−1, coverage: 50–100%, identity: 50–100%). Only the proteins functionally
annotated were further used in the ensuing analysis.

3. ORFs and Proteomics

The occurrence of the predicted ORFs from the transcriptomes in the previously
published R. bursa sialoproteomic data was assessed. The proteomic data was obtained pre-
viously by Couto et al. [76]. Briefly, four groups of ticks were generated considering the con-
ditions of uninfected unfed, uninfected fed, infected unfed, and infected fed, and salivary
glands from each were dissected for protein extraction. Protein extracts were precipitated
and digested, until the peptides were desalted; samples were analyzed via reverse phase
liquid chromatography coupled online with mass spectrometry (RP-LC-MS/MS) using an
Ekspert nLC 415 system combined to a 6600 TripleTOF® mass spectrometer (AB SCIEX®,
MA, USA) through information-dependent acquisition (IDA) followed by sequential win-
dowed data independent acquisition of the total high-resolution mass spectra (SWATH).
The BLASTP was used to perform a local analysis using the predicted Transdecode ORFs
from the sialotrancriptome as protein database and the respective peptides from proteomic
analysis as a query (E value cutoff of 0.0001, word-size of 7 for a shorter input sequence).

4. Protein Structure and Epitope Exposure

The presence of coiled-coil (C), alpha helix (H), and beta sheet (E) was predicted using
the NetSurfP-2.0 [75] and BepiPred 2.0 (structural frame) [77] programs. The Chou and
Fasman prediction method [78] (from IEDB Analysis Resource, v. 2.22, http://tools.iedb.
org/bcell/, accessed on 30 October 2019) was used to predict beta turns within the amino
acid sequence, considering probable turn regions those with values higher than 1.

The surface accessibility of the amino acids was evaluated using the Emini predic-
tion method [78] (from IEDB Analysis Resource, v. 2.22, threshold of 1, http://tools.
iedb.org/bcell/, accessed on 30 October 2019) and BepiPred 2.0 (surface frame) pro-
gram. Features such as flexibility and hydrophobicity were evaluated using the Karplus–
Schultz [79] and Parker [80] methods (from IEDB Analysis Resource, v. 2.22, threshold of 1,
http://tools.iedb.org/bcell/, accessed on 30 October 2019), respectively.

5. Prediction of B and T Cell Epitopes

Potential immunogenetic epitopes were predicted using linear B-cell epitope predic-
tors: the Kolaskar and Tongaonkar method [81] (from IEDB Analysis Resource, v. 2.22,
threshold of 1, http://tools.iedb.org/bcell/, accessed on 30 October 2019), the predicting
antigenic peptides online server (from Immunomedicine Group, http://imed.med.ucm.
es/Tools/antigenic.pl, accessed on 30 October 2019), BepiPred 1.0 [80] (from DTU Bioin-
formatics, http://www.cbs.dtu.dk/services/BepiPred-1.0/, accessed on 30 October 2019),
and BepiPred 2.0 (epitope frame) program.

T-cell epitopes were also predicted using all prediction method versions. MHC-I Binding
Predictions program (from IEDB Analysis Resource, v. 2.22, http://tools.iedb.org/mhci/,
accessed on 30 October 2019) was used to predict epitopes with high affinity to human,
mouse, and rat MHC-I. Prediction of MHC-II binding epitopes was obtained using the
MHC-II Binding Predictions (from IEDB Analysis Resource, v. 2.22, using all method versions,
selecting 12-18-mer peptides, http://tools.iedb.org/mhcii/, accessed on 30 October 2019)
and the MHC2Pred (http://crdd.osdd.net/raghava/mhc2pred/, accessed on 30 October

https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins
https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins
http://tools.iedb.org/bcell/
http://tools.iedb.org/bcell/
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http://imed.med.ucm.es/Tools/antigenic.pl
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2019) programs for human and mouse MHC-II databases. Predicted T-cell epitopes con-
taining a percentile rank lower or equal to one were selected to identify the representative
epitopes using the Epitope Cluster Analysis tools (from IEDB Analysis Resource, v. 2.22,
http://tools.iedb.org/cluster/, accessed on 30 October 2019). NetChop (v. 3.1) [82] and PCPS
(http://imed.med.ucm.es/Tools/pcps/index.html, accessed on 30 October 2019) programs
were used to explore if, after proteasomal processing, the epitope generated could be an
MHC binder, which means that could be presented in the host immune system, processed,
and ultimately induced in the host humoral and cellular immune pathway.

6. Peptide Properties

Amino acid sequence of selected peptides was used to predict it physicochemical charac-
teristics including molecular weight (Da), theoretical isoelectric point (pI), instability index,
grand average of hydropathicity (GRAVY), and aliphatic index, using Expasy ProtParam
server (http://expasy.org/cgi-bin/protpraram, accessed on 30 November 2019). The al-
lergenicity of the epitopes was predicted by the online servers AllergenFP (v. 1.0) [83],
AllerTop (v. 2.0) [84], and AllerCatPro (v. 1.7) [85]. Protein-Sol was used to predict
the peptide solubility (>0.8 values indicate a soluble molecule) [86] and CRYSTALP2 for
crystallization propensity [87]. Post-translational modification sites in the peptides were
predicted using ModPred [88] and PROSITE [89], regarding its impact on protein/peptide
production, structure and function [90]. The hemolytic, anti-angiogenic or toxic proper-
ties of the selected peptides were analyzed using HemoPI (all SVM methods were used;
SVM scores ranges between 0 and 1, i.e., 1 very likely to be hemolytic, 0 very unlikely to be
hemolytic) [91], AntiAngioPred (NT15 AAC and whole peptide AAC prediction methods
were used; threshold -0,2,) [92], and ToxinPred (all SVM methods were used; E value 10;
threshold 0.0) [93], respectively. For comparison, all these analysis were performed for the
published synthetic multi-epitope peptide SBm7462® [94]), which has demonstrated to be
a protective candidate for a next generation anti-tick vaccine [94,95].

7. Results and Discussion

Before searching for promising antigens, the previously published Sequence Read
Archives regarding uninfected-unfed, uninfected-fed, and B. ovis infected-fed R. bursa
salivary glands RNA sequencing [59] were reassembled and assessed for completeness
using BUSCO analysis [62] and a reference database of 1066 conserved arthropod genes
(see Table 1).

Table 1. BUSCO statistics for each Rhipicephalus bursa sialotranscriptome assembly against an arthropod database. Conserved
BUSCO genes were assigned to four classes of genes: missing, fragmented, duplicated, and complete.

Dataset Babesia ovis Infected and Fed Uninfected and Fed Uninfected and Unfed

Scaffolds (#) 70535 63942 58670

Assembly size (Mbp) 64.5 67.6 47.3

N50 (bp) 1856 2266 1522

Number of conserved arthropod
genes in BUSCO reference set 1066

Complete and single-copy 683 (64.1%) 690 (64.7%) 692 (64.9%)

Complete and duplicated 273 (25.6%) 312 (29.3%) 200 (18.8%)

Fragmented 78 (7.3%) 36 (3.4%) 125 (11.7%)

Missing 32 (3%) 28 (2.6%) 49 (4.6%)

The assembly of the sequencing reads of the salivary glands of B. ovis-infected-fed
R. bursa ticks yielded a transcriptome with 70,535 scaffolds, a total assembly size of
64.5 Mbp, and a scaffold N50 length of 1856 bp. The BUSCO completeness report of
the assembly indicated that 89.7% complete BUSCOs were obtained for this assembly.

http://tools.iedb.org/cluster/
http://imed.med.ucm.es/Tools/pcps/index.html
http://expasy.org/cgi-bin/protpraram
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Specifically, there were 956 complete (683 complete and single-copy; 273 duplicated),
78 fragmented, and 32 missing BUSCOs. Similarly, a final percentage of complete or-
thologous genes of 94.0% (uninfected -fed) and 83.7% (uninfected-unfed), respectively,
were determined for the remaining uninfected R. bursa sialotranscriptomes. It is unlikely
to produce a complete BUSCO transcriptome and it is accepted for non-model organisms,
such as ticks, to obtain complete scores ranging from 50% to 90% [96]. This is an indicator
of a proper transcriptome assembly; thus, these are acceptable ranges for percentage of
completeness relative to other RNAseq assemblies in the field [43,97]. Reassembled and
complete transcriptomes were considered for the next phase.

7.1. Feeding and Pathogen Transmission: Selection of Targets

The systematic workflow of an RV approach must focus on filtering ideal antigens that
provide a robust, long-lasting, and deliverable immune response, such as the humoral re-
sponse, which ultimately interferes with the host-vector-pathogen triad [20]. Thus, the fea-
tures of an ideal antigen for anti-tick vaccines includes: being a pivotal molecule on
tick/pathogen biology, not being homologous to the mammalian host, encoded by a single
gene, expressed across life stages and tick tissues, and capable of inducing B and T cells to
incite an immunological response without allergenic, hemolytic, and toxic effects [14,98].
Such humoral response is linked to topological features, such as extracellular or intramem-
brane location, and the presence of coincident epitope groups (CEGs) (also known as
“immunological kernels”), are accessible protein regions containing overlapped B and T
cell epitopes with ideal chemo-physical properties [52,99,100].

Therefore, the dataset from fed-infected tick salivary glands were analyzed. They were
found to correspond to proteins involved in blood feeding and parasite transmission.
These processes are intrinsically related to vector survival and competence [101].
Moreover, we performed in silico screening for the antigenic surfaceome and secretome
using different filters (Figure 1).
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Figure 1. Graphical depiction of the reverse vaccinology (RV)-based methodology used for antigen screening. From the “fed
and infected” R. bursa sialotranscriptome dataset, the secretome (secreted proteins) and the surfaceome (membrane proteins)
were differentiated using SignalP and TMHMM (software package, standalone installation or online server, current v.2.0.).
Several filters were applied using different programs to filter promising targets.

Transcripts containing membrane-related regions were filtered and analyzed regard-
ing its protein antigenicity, homology to vertebrate hosts, cell localization, and annotated
function (Supplementary material—Spreadsheet S1). From the transcriptomic selected
dataset, 8692 sequences were predicted to be membrane-related proteins that were asso-
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ciated with 5706 different protein family clusters. Each representative of every protein
family was investigated for its predicted antigenicity and 1125 proteins were found to be
probable antigens in comparison to the Bm86 tick vaccine antigen (Vaxijen score ≥ 0.7).
From these predicted antigenic proteins, 859 presented no homology to the vertebrate hosts,
warranting the probability of inducing a target tick-specific immune response in the host
animal and not leading to an auto-immune phenomenon [25,30,52]. In total, 16 proteins
were predicted to be localized in the cell plasma membrane, as a transmembrane protein
without signal peptide or GPI anchor (i.e., secreted or anchored). Following this analy-
sis, a putative lipid raft-associated protein containing a MARVEL domain (M_MARVEL,
DN25304, EEC06674.1) was identified.

Transcripts containing signal peptides were identified in a similar way as previously
described for the transmembrane-related proteins (Supplementary material—Spreadsheet
S2). From the current dataset, 4274 sequences contained signal peptides clustered into 3025
different protein families. Predicted antigenicity via Vaxijen identified 623 proteins that
presented higher probability of being antigenic relative to Bm86. Alignment and homology
analysis indicated that 478 proteins to be tick-specific and non-related to vertebrate hosts
(Figure 1). About 200 transcripts were predicted to be extracellular with no predicted
membrane-spanning regions following the signal peptide region. Finally, seven putative
proteins were identified consisting of two glycine-rich proteins (DN21364, DN28608),
an evasin (S_EVASIN, DN20966, AST14849.1), a ricin (S_RICIN, DN33470, EEC03321.1),
an antimicrobial peptide (DN7637), and two proteins related to heterodimerization interface
(DN16497) and coagulation (DN45898).

7.2. In Silico Characterization of Selected Candidates

In this study, one membrane-related (MARVEL) and two secreted (EVASIN, RICIN)
proteins were selected to proceed for specific immunoinformatic analysis, since their
putative function and occurrence in previously published proteomic data highlighted them
as promising targets for anti-tick or disease transmission blocking vaccine development.
While MARVEL can be found in the infected-fed, uninfected-fed, and uninfected-unfed
conditions of R. bursa sialoproteomic data, EVASIN and RICIN are only found in the
infected-fed state. This suggests the persistence of MARVEL in the tick cellular machinery
as a static membrane protein, while EVASIN and RICIN could be strongly or exclusively
linked to infection and feeding.

For each target, prediction methods were used to assess protein structure (Table 2) and
putative epitope exposure for a better identification of exposed and immunogenic regions,
including B and T (Supplementary material—Spreadsheet S3–S5) cell epitopes. Since very
limited information on MHC alleles from sheep and other host vertebrates of R. bursa ticks
is currently available, “pan-computational methods” predictions were used, as described
before [102]. The available allelic datasets from different but well-known hosts, such as
humans, mice, and rats, were used to extrapolate the vertebrate host with unknown alleles
such as sheep.
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Table 2. Topology and structure properties of the selected targets. Several bioinformatic tools were used to obtain this data.
(Prosite (*), VectorBase (**), Phobius (a), TMHMM (b), CCTOP (c), SACS TMHMM (d), and SignalP (e).)

Protein
Name Length (aa) MW (Da) pI Functional Domains Transmembrane

Domains
Extracellular

Domains SP GPI

MARVEL 155 16508.53 9.03

Contains:
leucine zipper domain

(pos. 24-52) *
and Marvel domain

(pos. 29-157 from
ISCW003585) **

Pos. 29-52, 64-84,
96-117, 129-150 a
Pos. 28-50, 63-85,
98-120, 127-149 b
Pos. 29-52, 62-85,
95-117, 127-149 c
Pos. 28-50, 63-85,
98-120, 127-149 d

Pos. 1-28, 85-95,
151-155 a

Pos. 1-27, 86-97,
150-155 b

Pos. 1-28, 86-94,
150-155 c

Pos. 1-27, 86-97,
150-155 d

No No

EVASIN 164 17681.84 4.20
Homology to an evasin

protein
(AST14849)

None
Pos. 28-164 a
Pos. 1-164 b
Pos. 29-164 c

Yes
Pos. 1-27 a
Pos. 1-26 e

No

RICIN 133 14401.49 8.19

Homology to a
hypothetical protein

which contains a
Ricin-type beta-trefoil

lectin domain
(EEC03321)

None
Pos. 1-133 a
Pos. 1-133 b
Pos. 40-133 c

Yes
Pos. 1-39 c
Pos. 1-37 e

No

Regions with overlapping CEGs were thoroughly examined to screen ideal features
for efficient production, using bioinformatic tools to evaluate physicochemical character-
istics, post-translational modification sites, propensity for solubility and crystallization,
allergenicity, and toxicity (Table 3). Depending on these characteristics, the production
and solubilization of these peptides or proteins are different. Finally, as far as possi-
ble, the potential negative effects on the host should be predicted a priori to testing a
potential vaccine [103]. Many highly reactive proteins identified from various parasites
(including mites and helminths) are prone to cause allergic reactions in the host [14,104].
Therefore, predicting allergenicity and anti-angiogenic or toxic properties of the selected
proteins/peptides are also required when screening for a promising candidate [13].
Taking all the aforementioned components into account, the three chosen candidates
are discussed in the following sections.
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Table 3. Physicochemical properties of the selected overlapping coincident epitopes groups (CEGs) from MARVEL, EVASIN, and RICIN. “+” represents high probability, “-“ represents
low probability.

Protein Name CEG Length
(aa)

Molecular
Weight (Da) pI Instability

Index GRAVY Aliphatic Index Allergenicity
(AllerFP/AllerTop/AllerCatPro)

Solubility and
Crystallization Propensity
(Protein-Sol, CRYSTALP2)

Hemolytic
Potency

(HemoPI)

Anti-Angiogenic
Property

(AntiAngioPred)

Toxicity
Prediction

(ToxinPred)

MARVEL 27 2698.98 9.5 74.70 0.167 71.85 -/+/- 0.669, none 0.01, 0.49, 0.44,
0.00, 0.49 +, + -, -, -, -

EVASIN 43 4835.13 3.69 66.52 -0.856 74.88 -/-/- 0.662, none 0.00, 0.47, 0.33,
0.00, 0.47 -, - -, -, -, -

RICIN 41 4243.91 6.43 57.47 0.285 97.56 -/+/- 0.659, none 0.00, 0.48, 0.47,
0.00, 0.48 -, - -, -, -, -

SBm7462® 45 5056.78 6.87 49.21 -0.300 47.78 -/-/- 0.484, none 0.45, 0.35, 0.37,
0.00, 0.35 +, + +, -, +, -
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7.3. Putative MARVEL Domain-Containing Protein

MARVEL domain-containing proteins generally present an M-shaped topology (four
transmembrane-helix region architecture with cytoplasmic N- and C-terminal regions) and
function in cholesterol-rich membrane apposition events, such as biogenesis of vesicular
transport carriers or tight junction regulation [105]. The putative MARVEL protein iden-
tified in this study is 155 amino acids long, thus lacking a signal peptide or GPI-anchor
and containing four transmembrane and three extracellular domains (Table 2, Figure 2).
From the predicted extracellular domains, only an N-terminal region containing 27 amino
acids was predicted to be majorly exposed, with a low structural complexity and a single
predicted post-translational modification (PTMs) and glycosylation (Figure 2, Supplementary
material—Spreadsheet S3). Such PTMs are associated with protein structure, stability,
activity, trafficking, and protein–protein interactions [90]. All of these targeted characteris-
tics are being considered for a potential vaccine candidate. The propensity of this protein to
induce the humoral pathway was evaluated by predicting in silico the B and T cell epitopes
(Figure 2, Supplementary material—Spreadsheet S3). The three B cell epitope predictors
showed that this segment of the MARVEL protein could be presented directly to B cells
and induce a humoral response. Additionally, this protein portion has predicted protease
cut sites (pos. 32-37) that could originate peptides that would enable presentation through
MHC I (pos. 18-27) and II (pos. 4-12) (Figure 2, Supplementary material—Spreadsheet S3).
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The predicted coincident epitope (MSSSTTVRQTTTVTTSGSSPVVALSVN) possesses
flexibility and hydrophobicity which makes this fragment a promising candidate for syn-
thetic production (Figure 2, Supplementary material—Spreadsheet S3). Other predictions
were performed (Table 3), which indicated that the peptide alone is alkaline with a high
probability to be unstable and hydrophobic. Nevertheless, peptide bioengineering by selec-
tion of a compatible carrier protein or linkage to other promising targets may contribute
towards alleviating such drawbacks.

This peptide has more thermostability and solubility than Bm86-derived peptide.
It also has low probability in causing allergic host reactions and hemolysis. Further, it can
be anti-angiogenic or toxic. These are all characteristics that improve the use of this antigen
for vaccine administration.

7.4. Putative Evasin

Other studies have mentioned that evasins are a secreted salivary glycoprotein that
enables the endurance of tick feeding by suppressing the host immune response [106].
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During blood feeding, such molecules are injected into the tick bite site and bind to
the host chemokines to inhibit its function, resulting in a prevention of chemotaxis of
leukocytes and subverting the host anti-inflammatory immune response associated to
this phenomenon [106]. Besides, evasins can be ubiquitously expressed by a wide variety
of tick species, constituting a promising target as an anti-tick vaccine that needs to be
explored [48,106].

The putative evasin identified in this study contained an N-terminal signal peptide
and no transmembrane helices (Table 2), suggesting that it might be a secretory protein.
Moreover, this sequence has high homology to an evasin protein from Rhipicephalus mi-
croplus (AST14849) and possess several characteristics from the evasin protein family [106],
such as nine Cys residues and N-linked glycosylation, as well as putative tyrosine sulfation
sites (Figure 3A, Supplementary material—Spreadsheet S4). A region following the pre-
dicted signal peptide (between pos. 29 and 70) has a low complexity structure with several
exposed residues (Figure 3A, Supplementary material—Spreadsheet S4), which could
facilitate epitope presentation. Predictors indicates that the protein could be potentially
cleaved in some positions, e.g., pos. 26 to 36 and 98 to 103, leaving a peptide portion (37–97)
to be potentially processed and presented by the MHCs. Within this secretory region,
many putative epitopes can be detected and processed by B and T cells containing a few
putative PTMs (i.e., phosphorylation and sulfation) (Supplementary material—Spreadsheet
S4). In this predicted highly immunogenic region, a peptide (EEEIVSDEYDYTTPDLDAYT-
PIPGARRPSLNLGSLELGSEEEY, pos. 29 to 71) was selected to be further evaluated in
silico (Table 3). Predictions revealed that this peptide is acidic and unstable upon synthesis
but such can be surmounted as previously referenced, in order to benefit on the other
properties, such as hydrophilicity, solubility, and having no negative impacts on the host.
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7.5. Putative Ricin

The most characteristic though not completely conserved sequence feature of ricin
B lectin domains is the presence of a Q-W repeats containing an omega loop but no
major segments of a helix or beta sheet throughout the sequence [107,108]. The pri-
mary structure of ricin proteins has shown the presence of a similar domain in many
carbohydrate-recognition proteins like plant, fungi, and bacteria AB-toxins, glycosidases, or
proteases [107–109]. Proteins containing such domains are linked to cytotoxicity [110,111],
cytoadhering [112], and possess immunomodulatory properties [113–115]. From the
dataset, one sequence shows similarity to a ricin B lectin domain (Table 2), but no Q-W
repeats were found. The 133 amino acid sequence contains a signal peptide and no trans-
membrane helices (Table 2), indicating that it might be secreted. Myristoylation and phos-
phorylation PTMs were predicted in this sequence (Supplementary material—Spreadsheet
S5). Even with a complex structure with alpha helixes and beta sheets that reduces the
exposure of epitopes, this sequence has regions that are likely to be recognized by B cell
receptors, as well as MHC I and MHC II receptors of different organisms (Figure 3B,
Supplementary material—Spreadsheet S5). We identified an N-terminal peptide region
(TVGVVQPVEYAANIARAIKMASDILGGAGDEGVFIKTMHGR) that possesses more pre-
dicted B and T cell epitopes than the remaining sequence and flanked by an enzymatic
cleavage site. Most of the predictors indicated that even with some undesirable character-
istics (such as instability index and GRAVY), this peptide has a pI closer to seven as the
SBm7462® peptide, could be thermostable, soluble, and present no harmful properties to
the host (Table 3).

8. Conclusions and Future Perspectives

Transmission-blocking vaccines are considered essential tools for interrupting disease
transmission. An immunized host produces inhibitory antibodies against pathogen/vector
antigens that are ingested by the vector during blood feeding, interfering ultimately with
vector competence and disease transmission [18]. The cellular pathway is compromised
since the antibodies alter the activity or signal transduction of proteins through a phys-
ical block [116,117]. The discovery of new antigens is a prerequisite in developing new
diagnostics and vaccines for disease surveillance and control. Reverse vaccinology is a
preferable approach to overcome the time and resources required to obtain promising
candidates. However, there is an urgent need to develop a pipeline to run multiple algo-
rithms in a single platform focused on tick research, including information on tick omics
data, vertebrate hosts immune databases (from livestock, domestic animals, humans,
including information about the epitope repertoire, and broad population coverage),
and proteins from transmitted pathogens.

This study combines the power of several bioinformatics tools to establish a rational
pipeline for vaccine antigen discovery. Focusing on peptide design will greatly reduce the
cost of a putative vaccine and enhance its accessibility to the community, since smaller
biomolecules are easier to synthetize and store [118]. Thus, three peptides that showed the
desired characteristics were identified for further testing as next-generation vaccine targets.

These promising antigens will be tested in a follow-up study, yet prior to vaccination
trials, a thorough investigation should be conducted to survey the humoral immune re-
sponse by animals from tick endemic regions to these peptides. A preexistent humoral
response to the antigens identified here, within an endemic area, will demonstrate that
such molecules do not protect the host from tick infestation. Alternatively, an absence of
an established and natural humoral response to these peptides might lend weight their
use in a new protective strategy or even as diagnostic markers. Interestingly, the evalua-
tion of the expression of such targets in cells, different tissues/fluids, and developmental
stages of R. bursa tick species, could elucidate their applicability as broad-spectrum tick
antigens. Several approaches to elucidate or validate the in vivo cellular localization
(e.g., immunofluorescence and western-blot assays), protein structure (e.g., crystallogra-
phy), and protein–protein interactions (e.g., yeast two-hybrid, etc.) could be conducted
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in future for top selected predicted targets. Pilot vaccination trials are needed to in vivo
validate the immunogenicity of peptides where different aspects should be taken in ac-
count, such as antigen design/production (peptide, native protein, synthetic, polymers,
type of host expression system, recombination with other promising antigens, linkers, etc.),
its administration (route/system, dose, adjuvant), the host response (humoral and cellular
immune response, physiological and clinical responses), and the influence on tick behavior
and physiological features.

Supplementary Materials: The following are available online at https://www.mdpi.com/2227-905
9/9/4/363/s1, Spreadsheet S1: Screening of assembled transcripts containing membrane-related
regions, regarding protein antigenicity, homology to vertebrate hosts, cell localization, and annotated
function. Spreadsheet S2: Screening of assembled transcripts containing signal peptides, regarding
protein antigenicity, homology to vertebrate hosts, cell localization, and annotated function. Spread-
sheet S3: Detailed information regarding putative MARVEL in silico characterization, including protein
structure and putative epitope exposure (B and T cell epitopes). Spreadsheet S4: Detailed information
regarding putative EVASIN in silico characterization, including protein structure, putative epitope
exposure (B and T cell epitopes). Spreadsheet S5: Detailed information regarding putative RICIN in
silico characterization, including protein structure, putative epitope exposure (B and T cell epitopes).
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