63 research outputs found

    Overview of Phobos/Deimos Regolith Ion Sample Mission (PRISM) Concept

    Get PDF
    Far more definitive information on composition is required to resolve the question of origin for the Martian moons Phobos and Deimos. Current infrared spectra of the objects are inconclusive due to the lack of strong diagnostic features.Definitive compositional measurements of Phobos could be obtained using in-situ X-ray, gamma-ray, or neutronspectroscopy or collecting and returning samples to Earth for analysis. We have proposed, in lieu of those methods, toderive Phobos and Deimos compositional data from secondary ion mass spectrometry (SIMS) measurements by calibratingthe instrument to elemental abundance measurements made for known samples in the laboratory. We describe thePhobos/Deimos Regolith Ion Sample Mission (PRISM) concept here. PRISM utilizes a high-resolution TOF plasma composition analyzer to make SIMS measurements by observing the sputtered species from various locations of the moons' surfaces. In general, the SIMS technique and ion mass spectrometers complement and expand quadrupole mass spectrometer measurements by collecting ions that have been energized to higher energies, 50-100 eV, and making measurements at very low densities and pressures. Furthermore, because the TOF technique accepts all masses all the time,it obtains continuous measurements and does not require stepping through masses. The instrument would draw less than10 W and weigh less than 5 kg. The spacecraft, nominally a radiation-hardened 12U CubeSat, would use a low-thrust SolarElectric Propulsion system to send it on a two-year journey to Mars, where it would co-orbit with Deimos and then Phobo

    Phenotypic and transcriptomic analyses of seven clinical Stenotrophomonas maltophilia isolates identify a small set of shared and commonly regulated genes involved in the biofilm lifestyle

    Get PDF
    Stenotrophomonas maltophilia is one of the most frequently isolated multidrug-resistant nosocomial opportunistic pathogens. It contributes to disease progression in cystic fibrosis (CF) patients and is frequently isolated from wounds, infected tissues, and catheter surfaces. On these diverse surfaces S. maltophilia lives in single-species or multispecies biofilms. Since very little is known about common processes in biofilms of different S. maltophilia isolates, we analyzed the biofilm profiles of 300 clinical and environmental isolates from Europe of the recently identified main lineages Sgn3, Sgn4, and Sm2 to Sm18. The analysis of the biofilm architecture of 40 clinical isolates revealed the presence of multicellular structures and high phenotypic variability at a strain-specific level. Further, transcriptome analyses of biofilm cells of seven clinical isolates identified a set of 106 shared strongly expressed genes and 33 strain-specifically expressed genes. Surprisingly, the transcriptome profiles of biofilm versus planktonic cells revealed that just 9.43% ± 1.36% of all genes were differentially regulated. This implies that just a small set of shared and commonly regulated genes is involved in the biofilm lifestyle. Strikingly, iron uptake appears to be a key factor involved in this metabolic shift. Further, metabolic analyses implied that S. maltophilia employs a mostly fermentative growth mode under biofilm conditions. The transcriptome data of this study together with the phenotypic and metabolic analyses represent so far the largest data set on S. maltophilia biofilm versus planktonic cells. This study will lay the foundation for the identification of strategies for fighting S. maltophilia biofilms in clinical and industrial settings. IMPORTANCE Microorganisms living in a biofilm are much more tolerant to antibiotics and antimicrobial substances than planktonic cells are. Thus, the treatment of infections caused by microorganisms living in biofilms is extremely difficult. Nosocomial infections (among others) caused by S. maltophilia, particularly lung infection among CF patients, have increased in prevalence in recent years. The intrinsic multidrug resistance of S. maltophilia and the increased tolerance to antimicrobial agents of its biofilm cells make the treatment of S. maltophilia infection difficult. The significance of our research is based on understanding the common mechanisms involved in biofilm formation of different S. maltophilia isolates, understanding the diversity of biofilm architectures among strains of this species, and identifying the differently regulated processes in biofilm versus planktonic cells. These results will lay the foundation for the treatment of S. maltophilia biofilms

    Recent Food Shortage Is Associated with Leprosy Disease in Bangladesh: A Case-Control Study

    Get PDF
    Although intensive control programs reduced the prevalence of leprosy worldwide, new cases of this infectious disease are still detected in several of the poorest areas of the world. Therefore the disease is known as a disease of poverty. To be able to control the disease it is important to know which aspects of poverty play a role in transmission and acquiring clinical signs of disease. In this study socio-economic circumstances of recently diagnosed leprosy patients were compared with those of a control population in the poverty stricken northwest area of Bangladesh where leprosy is common. A recent period of food shortage was the only socio-economic factor that was found related to leprosy disease in this study and not poverty as such. Food shortage is seasonal and poverty related in northwest Bangladesh, while malnutrition is known to lower immunity and make people more vulnerable to infectious diseases. Therefore it was concluded that malnutrition as an aspect of poverty played an important role in the development of the clinical signs of leprosy. We therefore recommend that nutritional support for high risk groups should be included in leprosy control programmes to reduce risk of disease in areas where leprosy is common

    Standardized postnatal management of infants with congenital diaphragmatic hernia in Europe: The CDH EURO Consortium Consensus - 2015 Update

    Get PDF
    In 2010, the congenital diaphragmatic hernia (CDH) EURO Consortium published a standardized neonatal treatment protocol. Five years later, the number of participating centers has been raised from 13 to 22. In this article the relevant literature is updated, and consensus has been reached between the members of the CDH EURO Consortium. Key updated recommendations are: (1) planned delivery after a gestational age of 39 weeks in a high-volume tertiary center; (2) neuromuscular blocking agents to be avoided during initial treatment in the delivery room; (3) adapt treatment to reach a preductal saturation of between 80 and 95% and postductal saturation >70%; (4) target PaCO2 to be between 50 and 70 mm Hg; (5) conventional mechanical ventilation to be the optimal initial ventilation strategy, and (6) intravenous sildenafil to be considered in CDH patients with severe pulmonary hypertension. This article represents the current opinion of all consortium members in Europe for the optimal neonatal treatment of CDH

    The CoDiNOS trial protocol: an international randomised controlled trial of intravenous sildenafil versus inhaled nitric oxide for the treatment of pulmonary hypertension in neonates with congenital diaphragmatic hernia

    Get PDF
    INTRODUCTION: Congenital diaphragmatic hernia (CDH) is a developmental defect of the diaphragm that impairs normal lung development, causing pulmonary hypertension (PH). PH in CDH newborns is the main determinant for morbidity and mortality. Different therapies are still mainly based on 'trial and error'. Inhaled nitric oxide (iNO) is often the drug of first choice. However, iNO does not seem to improve mortality. Intravenous sildenafil has reduced mortality in newborns with PH without CDH, but prospective data in CDH patients are lacking. METHODS AND ANALYSIS: In an open label, multicentre, international randomised controlled trial in Europe, Canada and Australia, 330 newborns with CDH and PH are recruited over a 4-year period (2018-2022). Patients are randomised for intravenous sildenafil or iNO. Sildenafil is given in a loading dose of 0.4 mg/kg in 3 hours; followed by continuous infusion of 1.6 mg/kg/day, iNO is dosed at 20 ppm. Primary outcome is absence of PH on day 14 without pulmonary vasodilator therapy and/or absence of death within the first 28 days of life. Secondary outcome measures include clinical and echocardiographic markers of PH in the first year of life. We hypothesise that sildenafil gives a 25% reduction in the primary outcome from 68% to 48% on day 14, for which a sample size of 330 patients is needed. An intention-to-treat analysis will be performed. A p-value (two-sided) <0.05 is considered significant in all analyses. ETHICS AND DISSEMINATION: Ethics approval has been granted by the ethics committee in Rotterdam (MEC-2017-324) and the central Committee on Research Involving Human Subjects (NL60229.078.17) in the Netherlands. The principles of the Declaration of Helsinki, the Medical Research Involving Human Subjects Act and the national rules and regulations on personal data protection will be used. Parental informed consent will be obtained. TRIAL REGISTRATION NUMBER: NTR6982; Pre-results

    VEGFR2 promotes central endothelial activation and the spread of pain in inflammatory arthritis

    Get PDF
    Chronic pain can develop in response to conditions such as inflammatory arthritis. The central mechanisms underlying the development and maintenance of chronic pain in humans are not well elucidated although there is evidence for a role of microglia and astrocytes. However in pre-clinical models of pain, including models of inflammatory arthritis, there is a wealth of evidence indicating roles for pathological glial reactivity within the CNS. In the spinal dorsal horn of rats with painful inflammatory arthritis we found both a significant increase in CD11b+ microglia-like cells and GFAP+ astrocytes associated with blood vessels, and the number of activated blood vessels expressing the adhesion molecule ICAM-1, indicating potential glio-vascular activation. Using pharmacological interventions targeting VEGFR2 in arthritic rats, to inhibit endothelial cell activation, the number of dorsal horn ICAM-1+ blood vessels, CD11b+ microglia and the development of secondary mechanical allodynia, an indicator of central sensitization, were all prevented. Targeting endothelial VEGFR2 by inducible Tie2-specific VEGFR2 knock-out also prevented secondary allodynia in mice and glio-vascular activation in the dorsal horn in response to inflammatory arthritis. Inhibition of VEGFR2 in vitro significantly blocked ICAM-1-dependent monocyte adhesion to brain microvascular endothelial cells, when stimulated with inflammatory mediators TNFa and VEGF-A165a. Taken together our findings suggest that a novel VEGFR2-mediated spinal cord gliovascular mechanism may promote peripheral CD11b+ circulating cell transmigration into the CNS parenchyma and contribute to the development of chronic pain in inflammatory arthritis. We hypothesise that preventing this glio-vascular activation and circulating cell translocation into the spinal cord could be a new therapeutic strategy for pain caused by rheumatoid arthritis

    A Putative P-Type ATPase Required for Virulence and Resistance to Haem Toxicity in Listeria monocytogenes

    Get PDF
    Regulation of iron homeostasis in many pathogens is principally mediated by the ferric uptake regulator, Fur. Since acquisition of iron from the host is essential for the intracellular pathogen Listeria monocytogenes, we predicted the existence of Fur-regulated systems that support infection. We examined the contribution of nine Fur-regulated loci to the pathogenicity of L. monocytogenes in a murine model of infection. While mutating the majority of the genes failed to affect virulence, three mutants exhibited a significantly compromised virulence potential. Most striking was the role of the membrane protein we designate FrvA (Fur regulated virulence factor A; encoded by frvA [lmo0641]), which is absolutely required for the systemic phase of infection in mice and also for virulence in an alternative infection model, the Wax Moth Galleria mellonella. Further analysis of the ΔfrvA mutant revealed poor growth in iron deficient media and inhibition of growth by micromolar concentrations of haem or haemoglobin, a phenotype which may contribute to the attenuated growth of this mutant during infection. Uptake studies indicated that the ΔfrvA mutant is unaffected in the uptake of ferric citrate but demonstrates a significant increase in uptake of haem and haemin. The data suggest a potential role for FrvA as a haem exporter that functions, at least in part, to protect the cell against the potential toxicity of free haem

    Relative Undernourishment and Food Insecurity Associations with Plasmodium falciparum Among Batwa Pygmies in Uganda: Evidence from a Cross-Sectional Survey

    Get PDF
    Although malnutrition and malaria co-occur among individuals and populations globally, effects of nutritional status on risk for parasitemia and clinical illness remain poorly understood. We investigated associations between Plasmodium falciparum infection, nutrition, and food security in a cross-sectional survey of 365 Batwa pygmies in Kanungu District, Uganda in January of 2013. We identified 4.1% parasite prevalence among individuals over 5 years old. Severe food insecurity was associated with increased risk for positive rapid immunochromatographic test outcome (adjusted relative risk [ARR] = 13.09; 95% confidence interval [95% CI] = 2.23–76.79). High age/sex-adjusted mid-upper arm circumference was associated with decreased risk for positive test among individuals who were not severely food-insecure (ARR = 0.37; 95% CI = 0.19–0.69). Within Batwa pygmy communities, where malnutrition and food insecurity are common, individuals who are particularly undernourished or severely food-insecure may have elevated risk for P. falciparum parasitemia. This finding may motivate integrated control of malaria and malnutrition in low-transmission settings

    A Critical Role for CD8 T Cells in a Nonhuman Primate Model of Tuberculosis

    Get PDF
    The role of CD8 T cells in anti-tuberculosis immunity in humans remains unknown, and studies of CD8 T cell–mediated protection against tuberculosis in mice have yielded controversial results. Unlike mice, humans and nonhuman primates share a number of important features of the immune system that relate directly to the specificity and functions of CD8 T cells, such as the expression of group 1 CD1 proteins that are capable of presenting Mycobacterium tuberculosis lipids antigens and the cytotoxic/bactericidal protein granulysin. Employing a more relevant nonhuman primate model of human tuberculosis, we examined the contribution of BCG- or M. tuberculosis-elicited CD8 T cells to vaccine-induced immunity against tuberculosis. CD8 depletion compromised BCG vaccine-induced immune control of M. tuberculosis replication in the vaccinated rhesus macaques. Depletion of CD8 T cells in BCG-vaccinated rhesus macaques led to a significant decrease in the vaccine-induced immunity against tuberculosis. Consistently, depletion of CD8 T cells in rhesus macaques that had been previously infected with M. tuberculosis and cured by antibiotic therapy also resulted in a loss of anti-tuberculosis immunity upon M. tuberculosis re-infection. The current study demonstrates a major role for CD8 T cells in anti-tuberculosis immunity, and supports the view that CD8 T cells should be included in strategies for development of new tuberculosis vaccines and immunotherapeutics
    • …
    corecore