796 research outputs found

    The Glands of the Anal Canal in Man

    Get PDF
    Author Institution: Department of Anatomy, The Ohio State University, Columbus, Ohi

    Tertiary education in Latvia today and tomorrow

    Get PDF
    Tertiary education, scenarios, regional development., Teaching/Communication/Extension/Profession, G32,

    Ab initio calculations of Li2(Co, Mn)O8 solid solutions for rechargeable batteries

    Get PDF
    The presented study has been financed via the Latvian Science Council Grant No. 2018/2-0083. The author is grateful to Professors M. R. Philpott, G. Ceder and G. Borstel for many stimulating discussions during his work at Singapore. We performed all our ab initio calculations at North German Parallel Computer Center located at Hannover (HLRN).Current commercially available rechargeable Li-ion batteries, for example LiCoO2, are working mostly in the 4 V regime. One often suggested possibility to improve the effectivity of Li-ion batteries are the creation of the 5 V cathode materials. We performed quantum mechanical calculations on the average battery voltage for the Li2CoxMn4−xO8 (x = 0, 1, 2, 3 and 4) cathode materials by means of the WIEN2k computer program package. The calculated average battery voltages for x = 0, 1, 2, 3 and 4 are equal to 3.95, 5, 4.47, 4.19 and 3.99 V. Our ab initio calculation results are compared with the available experimental data for x = 0, 1, 2 and 4 which are equal to 4, 5, 5 and 4 V. Thereby, for the Li2Co1Mn3O8 battery cathode material, our calculated average battery voltage around 5 V is in perfect agreement with the experimentally available battery voltage value of 5 Volt. Nevertheless, our calculated average battery voltage is underestimated (4.47 V) for the Li2Co2Mn2O8 cathode material, which also experimentally exhibits the 5 V voltage.Latvian Council of Science 2018/2-0083; Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART

    Ab initio Calculations for SrTiO_3 (100) Surface Structure

    Get PDF
    Results of detailed calculations for SrTiO_3 (100) surface relaxation and the electronic structure for the two different terminations (SrO and TiO_2) are discussed. These are based on ab initio Hartree-Fock (HF) method with electron correlation corrections and Density Functional Theory (DFT) with different exchange-correlation functionals, including hybrid (B3PW, B3LYP) exchange techniques. Results are compared with previous ab initio plane wave LDA calculations. All methods agree well on both surface energies and on atomic displacements. Considerable increase of Ti[Single Bond]O chemical bond covalency nearby the surface is predicted, along with a gap reduction, especially for the TiO_2 termination
    corecore