Abstract

Far more definitive information on composition is required to resolve the question of origin for the Martian moons Phobos and Deimos. Current infrared spectra of the objects are inconclusive due to the lack of strong diagnostic features.Definitive compositional measurements of Phobos could be obtained using in-situ X-ray, gamma-ray, or neutronspectroscopy or collecting and returning samples to Earth for analysis. We have proposed, in lieu of those methods, toderive Phobos and Deimos compositional data from secondary ion mass spectrometry (SIMS) measurements by calibratingthe instrument to elemental abundance measurements made for known samples in the laboratory. We describe thePhobos/Deimos Regolith Ion Sample Mission (PRISM) concept here. PRISM utilizes a high-resolution TOF plasma composition analyzer to make SIMS measurements by observing the sputtered species from various locations of the moons' surfaces. In general, the SIMS technique and ion mass spectrometers complement and expand quadrupole mass spectrometer measurements by collecting ions that have been energized to higher energies, 50-100 eV, and making measurements at very low densities and pressures. Furthermore, because the TOF technique accepts all masses all the time,it obtains continuous measurements and does not require stepping through masses. The instrument would draw less than10 W and weigh less than 5 kg. The spacecraft, nominally a radiation-hardened 12U CubeSat, would use a low-thrust SolarElectric Propulsion system to send it on a two-year journey to Mars, where it would co-orbit with Deimos and then Phobo

    Similar works