3,119 research outputs found

    Monte Carlo Simulation of Magnetization Reversal in Fe Sesquilayers on W(110)

    Full text link
    Iron sesquilayers grown at room temperature on W(110) exhibit a pronounced coercivity maximum near a coverage of 1.5 atomic monolayers. On lattices which faithfully reproduce the morphology of the real films, a kinetic Ising model is utilized to simulate the domain-wall motion. Simulations reveal that the dynamics is dominated by the second-layer islands, which act as pinning centers. The simulated dependencies of the coercivity on the film coverage, as well as on the temperature and the frequency of the applied field, are very similar to those measured in experiments. Unlike previous micromagnetic models, the presented approach provides insight into the dynamics of the domain-wall motion and clearly reveals the role of thermal fluctuations.Comment: Final version to appear in Phys. Rev. B. References to related works added. 7 pages, 5 figures, RevTex, mpeg simulations available at http://www.scri.fsu.edu/~rikvol

    Sensitivity of the IceCube Detector to Astrophysical Sources of High Energy Muon Neutrinos

    Full text link
    We present the results of a Monte-Carlo study of the sensitivity of the planned IceCube detector to predicted fluxes of muon neutrinos at TeV to PeV energies. A complete simulation of the detector and data analysis is used to study the detector's capability to search for muon neutrinos from sources such as active galaxies and gamma-ray bursts. We study the effective area and the angular resolution of the detector as a function of muon energy and angle of incidence. We present detailed calculations of the sensitivity of the detector to both diffuse and pointlike neutrino emissions, including an assessment of the sensitivity to neutrinos detected in coincidence with gamma-ray burst observations. After three years of datataking, IceCube will have been able to detect a point source flux of E^2*dN/dE = 7*10^-9 cm^-2s^-1GeV at a 5-sigma significance, or, in the absence of a signal, place a 90% c.l. limit at a level E^2*dN/dE = 2*10^-9 cm^-2s^-1GeV. A diffuse E-2 flux would be detectable at a minimum strength of E^2*dN/dE = 1*10^-8 cm^-2s^-1sr^-1GeV. A gamma-ray burst model following the formulation of Waxman and Bahcall would result in a 5-sigma effect after the observation of 200 bursts in coincidence with satellite observations of the gamma-rays.Comment: 33 pages, 13 figures, 6 table

    Study of Tau-pair Production in Photon-Photon Collisions at LEP and Limits on the Anomalous Electromagnetic Moments of the Tau Lepton

    Full text link
    Tau-pair production in the process e+e- -> e+e-tau+tau- was studied using data collected by the DELPHI experiment at LEP2 during the years 1997 - 2000. The corresponding integrated luminosity is 650 pb^{-1}. The values of the cross-section obtained are found to be in agreement with QED predictions. Limits on the anomalous magnetic and electric dipole moments of the tau lepton are deduced.Comment: 20 pages, 9 figures, Accepted by Eur. Phys. J.

    CP asymmetry in BϕKSB \to \phi K_S in a general two-Higgs-doublet model with fourth-generation quarks

    Full text link
    We discuss the time-dependent CP asymmetry of decay BϕKSB \to \phi K_S in an extension of the Standard Model with both two Higgs doublets and additional fourth-generation quarks. We show that although the Standard Model with two-Higgs-doublet and the Standard model with fourth generation quarks alone are not likely to largely change the effective sin2β\sin 2 \beta from the decay of BϕKSB \to \phi K_S , the model with both additional Higgs doublet and fourth-generation quarks can easily account for the possible large negative value of sin2β\sin 2 \beta without conflicting with other experimental constraints. In this model, additional large CP violating effects may arise from the flavor changing Yukawa interactions between neutral Higgs bosons and the heavy fourth generation down type quark, which can modify the QCD penguin contributions. With the constraints obtained from bssˉsb \to s \bar{s} s processes such as BXsγB \to X_s \gamma and ΔmBs0\Delta m_{B_s^0}, this model can lead to the effective sin2β\sin 2 \beta to be as large as 0.4- 0.4 in the CP asymmetry of BϕKSB \to \phi K_S.Comment: 13 pages, 5 figures, references added, to appear in Eur.Phys.J.

    A Precise Measurement of the Tau Lifetime

    Full text link
    The tau lepton lifetime has been measured with the e+e- -> tau+tau- events collected by the DELPHI detector at LEP in the years 1991-1995. Three different methods have been exploited, using both one-prong and three-prong tau decay channels. Two measurements have been made using events in which both taus decay to a single charged particle. Combining these measurements gave tau_tau (1 prong) = 291.8 +/- 2.3 (stat) +/- 1.5 (sys) fs. A third measurement using taus which decayed to three charged particles yielded tau_tau (3 prong) = 288.6 +/- 2.4 (stat) +/- 1.3 (sys) fs. These were combined with previous DELPHI results to measure the tau lifetime, using the full LEP1 data sample, to be tau_tau = 290.9 +/- 1.4 (stat) +/- 1.0 (sys) fs.Comment: 27 pages, 7 figure

    On the selection of AGN neutrino source candidates for a source stacking analysis with neutrino telescopes

    Get PDF
    The sensitivity of a search for sources of TeV neutrinos can be improved by grouping potential sources together into generic classes in a procedure that is known as source stacking. In this paper, we define catalogs of Active Galactic Nuclei (AGN) and use them to perform a source stacking analysis. The grouping of AGN into classes is done in two steps: first, AGN classes are defined, then, sources to be stacked are selected assuming that a potential neutrino flux is linearly correlated with the photon luminosity in a certain energy band (radio, IR, optical, keV, GeV, TeV). Lacking any secure detailed knowledge on neutrino production in AGN, this correlation is motivated by hadronic AGN models, as briefly reviewed in this paper. The source stacking search for neutrinos from generic AGN classes is illustrated using the data collected by the AMANDA-II high energy neutrino detector during the year 2000. No significant excess for any of the suggested groups was found.Comment: 43 pages, 12 figures, accepted by Astroparticle Physic

    Azimuthal anisotropy of charged particles at high transverse momenta in PbPb collisions at sqrt(s[NN]) = 2.76 TeV

    Get PDF
    The azimuthal anisotropy of charged particles in PbPb collisions at nucleon-nucleon center-of-mass energy of 2.76 TeV is measured with the CMS detector at the LHC over an extended transverse momentum (pt) range up to approximately 60 GeV. The data cover both the low-pt region associated with hydrodynamic flow phenomena and the high-pt region where the anisotropies may reflect the path-length dependence of parton energy loss in the created medium. The anisotropy parameter (v2) of the particles is extracted by correlating charged tracks with respect to the event-plane reconstructed by using the energy deposited in forward-angle calorimeters. For the six bins of collision centrality studied, spanning the range of 0-60% most-central events, the observed v2 values are found to first increase with pt, reaching a maximum around pt = 3 GeV, and then to gradually decrease to almost zero, with the decline persisting up to at least pt = 40 GeV over the full centrality range measured.Comment: Replaced with published version. Added journal reference and DO

    Compressed representation of a partially defined integer function over multiple arguments

    Get PDF
    In OLAP (OnLine Analitical Processing) data are analysed in an n-dimensional cube. The cube may be represented as a partially defined function over n arguments. Considering that often the function is not defined everywhere, we ask: is there a known way of representing the function or the points in which it is defined, in a more compact manner than the trivial one

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO

    Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC

    Get PDF
    The uncertainty on the calorimeter energy response to jets of particles is derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the calorimeter response to single isolated charged hadrons is measured and compared to the Monte Carlo simulation using proton-proton collisions at centre-of-mass energies of sqrt(s) = 900 GeV and 7 TeV collected during 2009 and 2010. Then, using the decay of K_s and Lambda particles, the calorimeter response to specific types of particles (positively and negatively charged pions, protons, and anti-protons) is measured and compared to the Monte Carlo predictions. Finally, the jet energy scale uncertainty is determined by propagating the response uncertainty for single charged and neutral particles to jets. The response uncertainty is 2-5% for central isolated hadrons and 1-3% for the final calorimeter jet energy scale.Comment: 24 pages plus author list (36 pages total), 23 figures, 1 table, submitted to European Physical Journal
    corecore