55 research outputs found

    Characterization of the invariable residue 51 mutations of human immunodeficiency virus type 1 capsid protein on in vitro CA assembly and infectivity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The mature HIV-1 conical core formation proceeds through highly regulated protease cleavage of the Gag precursor, which ultimately leads to substantial rearrangements of the capsid (CAp24) molecule involving both inter- and intra-molecular contacts of the CAp24 molecules. In this aspect, Asp51 which is located in the N-terminal domain of HIV-1 CAp24 plays an important role by forming a salt-bridge with the free imino terminus Pro1 following proteolytic cleavage and liberation of the CAp24 protein from the Pr55Gag precursor. Thus, previous substitution mutation of Asp51 to alanine (D51A) has shown to be lethal and that this invariable residue was found essential for tube formation in vitro, virus replication and virus capsid formation.</p> <p>Results</p> <p>We extended the above investigation by introducing three different D51 substitution mutations (D51N, D51E, and D51Q) into both prokaryotic and eukaryotic expression systems and studied their effects on in vitro capsid assembly and virus infectivity. Two substitution mutations (D51E and D51N) had no substantial effect on in vitro capsid assembly, yet they impaired viral infectivity and particle production. In contrast, the D51Q mutant was defective both for in vitro capsid assembly and for virus replication in cell culture.</p> <p>Conclusion</p> <p>These results show that substitutions of D51 with glutamate, glutamine, or asparagine, three amino acid residues that are structurally related to aspartate, could partially rescue both in vitro capsid assembly and intra-cellular CAp24 production but not replication of the virus in cultured cells.</p

    Mutation in the loop C-terminal to the cyclophilin A binding site of HIV-1 capsid protein disrupts proper virus assembly and infectivity

    Get PDF
    We have studied the effects associated with two single amino acid substitution mutations in HIV-1 capsid (CA), the E98A and E187G. Both amino acids are well conserved among all major HIV-1 subtypes. HIV-1 infectivity is critically dependent on proper CA cone formation and mutations in CA are lethal when they inhibit CA assembly by destabilizing the intra and/or inter molecular CA contacts, which ultimately abrogate viral replication. Glu98, which is located on a surface of a flexible cyclophilin A binding loop is not involved in any intra-molecular contacts with other CA residues. In contrast, Glu187 has extensive intra-molecular contacts with eight other CA residues. Additionally, Glu187 has been shown to form a salt-bridge with Arg18 of another N-terminal CA monomer in a N-C dimer. However, despite proper virus release, glycoprotein incorporation and Gag processing, electron microscopy analysis revealed that, in contrast to the E187G mutant, only the E98A particles had aberrant core morphology that resulted in loss of infectivity

    Impact of HMGB1/TLR Ligand Complexes on HIV-1 Replication: Possible Role for Flagellin during HIV-1 Infection

    Get PDF
    Objective. We hypothesized that HMGB1 in complex with bacterial components, such as flagellin, CpG-ODN, and LPS, promotes HIV-1 replication. Furthermore, we studied the levels of antiflagellin antibodies during HIV-1-infection. Methods. Chronically HIV-1-infected U1 cells were stimulated with necrotic extract/recombinant HMGB1 in complex with TLR ligands or alone. HIV-1 replication was estimated by p24 antigen in culture supernatants 48–72 hours after stimulation. The presence of systemic anti-flagellin IgG was determined in 51 HIV-1-infected patients and 19 controls by immunoblotting or in-house ELISA. Results. Flagellin, LPS, and CpG-ODN induced stronger HIV-1 replication when incubated together with necrotic extract or recombinant HMGB1 than activation by any of the compounds alone. Moreover, the stimulatory effect of necrotic extract was inhibited by depletion of HMGB1. Elevated levels of anti-flagellin antibodies were present in plasma from HIV-1-infected patients and significantly decreased during 2 years of antiretroviral therapy. Conclusions. Our findings implicate a possible role of HGMB1-bacterial complexes, as a consequence of microbial translocation and cell necrosis, for immune activation in HIV-1 pathogenesis. We propose that flagellin is an important microbial product, that modulates viral replication and induces adaptive immune responses in vivo

    Isolation and characterization of a small antiretroviral molecule affecting HIV-1 capsid morphology

    Get PDF
    Background Formation of an HIV-1 particle with a conical core structure is a prerequisite for the subsequent infectivity of the virus particle. We have previously described that glycineamide (G-NH2) when added to the culture medium of infected cells induces non-infectious HIV-1 particles with aberrant core structures. Results Here we demonstrate that it is not G-NH2 itself but a metabolite thereof that affects HIV-1 infectivity and capsid assembly. The conversion of G-NH2 to its antiviral metabolite is catalyzed by an enzyme present in bovine and porcine but surprisingly not in human serum. Structure determination by NMR suggested that the active G-NH2 metabolite was α-hydroxyglycineamide (α-HGA). Chemically synthesized α-HGA inhibited HIV-1 replication to the same degree as G-NH2, unlike a number of other synthesized analogues of G-NH2 which had no effect on HIV-1 replication. Comparisons by capillary electrophoresis and HPLC of the metabolite with the chemically synthesized α-HGA further confirmed that the antiviral GNH2-metabolite indeed was α-HGA. Conclusions α-HGA has an unusually simple structure and a novel mechanism of antiviral action. Thus, α-HGA could be a lead for new antiviral substances belonging to a new class of anti-HIV drugs, i.e. capsid assembly inhibitors

    Bombali Virus in Mops condylurus Bat, Kenya

    Get PDF
    Bombali virus (genus Ebolavirus) was identified in organs and excreta of an Angolan free-tailed bat (Mops condylurus) in Kenya. Complete genome analysis revealed 98% nucleotide sequence similarity to the prototype virus from Sierra Leone. No Ebola virus-specific RNA or antibodies were detected from febrile humans in the area who reported contact with bats.Peer reviewe

    Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    Background: The Global Burden of Diseases, Injuries, and Risk Factors Study 2017 (GBD 2017) includes a comprehensive assessment of incidence, prevalence, and years lived with disability (YLDs) for 354 causes in 195 countries and territories from 1990 to 2017. Previous GBD studies have shown how the decline of mortality rates from 1990 to 2016 has led to an increase in life expectancy, an ageing global population, and an expansion of the non-fatal burden of disease and injury. These studies have also shown how a substantial portion of the world's population experiences non-fatal health loss with considerable heterogeneity among different causes, locations, ages, and sexes. Ongoing objectives of the GBD study include increasing the level of estimation detail, improving analytical strategies, and increasing the amount of high-quality data. Methods: We estimated incidence and prevalence for 354 diseases and injuries and 3484 sequelae. We used an updated and extensive body of literature studies, survey data, surveillance data, inpatient admission records, outpatient visit records, and health insurance claims, and additionally used results from cause of death models to inform estimates using a total of 68 781 data sources. Newly available clinical data from India, Iran, Japan, Jordan, Nepal, China, Brazil, Norway, and Italy were incorporated, as well as updated claims data from the USA and new claims data from Taiwan (province of China) and Singapore. We used DisMod-MR 2.1, a Bayesian meta-regression tool, as the main method of estimation, ensuring consistency between rates of incidence, prevalence, remission, and cause of death for each condition. YLDs were estimated as the product of a prevalence estimate and a disability weight for health states of each mutually exclusive sequela, adjusted for comorbidity. We updated the Socio-demographic Index (SDI), a summary development indicator of income per capita, years of schooling, and total fertility rate. Additionally, we calculated differences between male and female YLDs to identify divergent trends across sexes. GBD 2017 complies with the Guidelines for Accurate and Transparent Health Estimates Reporting. Findings: Globally, for females, the causes with the greatest age-standardised prevalence were oral disorders, headache disorders, and haemoglobinopathies and haemolytic anaemias in both 1990 and 2017. For males, the causes with the greatest age-standardised prevalence were oral disorders, headache disorders, and tuberculosis including latent tuberculosis infection in both 1990 and 2017. In terms of YLDs, low back pain, headache disorders, and dietary iron deficiency were the leading Level 3 causes of YLD counts in 1990, whereas low back pain, headache disorders, and depressive disorders were the leading causes in 2017 for both sexes combined. All-cause age-standardised YLD rates decreased by 3·9% (95% uncertainty interval [UI] 3·1-4·6) from 1990 to 2017; however, the all-age YLD rate increased by 7·2% (6·0-8·4) while the total sum of global YLDs increased from 562 million (421-723) to 853 million (642-1100). The increases for males and females were similar, with increases in all-age YLD rates of 7·9% (6·6-9·2) for males and 6·5% (5·4-7·7) for females. We found significant differences between males and females in terms of age-standardised prevalence estimates for multiple causes. The causes with the greatest relative differences between sexes in 2017 included substance use disorders (3018 cases [95% UI 2782-3252] per 100 000 in males vs 1400 [1279-1524] per 100 000 in females), transport injuries (3322 [3082-3583] vs 2336 [2154-2535]), and self-harm and interpersonal violence (3265 [2943-3630] vs 5643 [5057-6302]). Interpretation: Global all-cause age-standardised YLD rates have improved only slightly over a period spanning nearly three decades. However, the magnitude of the non-fatal disease burden has expanded globally, with increasing numbers of people who have a wide spectrum of conditions. A subset of conditions has remained globally pervasive since 1990, whereas other conditions have displayed more dynamic trends, with different ages, sexes, and geographies across the globe experiencing varying burdens and trends of health loss. This study emphasises how global improvements in premature mortality for select conditions have led to older populations with complex and potentially expensive diseases, yet also highlights global achievements in certain domains of disease and injury

    Healthcare Access and Quality Index based on mortality from causes amenable to personal health care in 195 countries and territories, 1990-2015 : a novel analysis from the Global Burden of Disease Study 2015

    Get PDF
    Background National levels of personal health-care access and quality can be approximated by measuring mortality rates from causes that should not be fatal in the presence of effective medical care (ie, amenable mortality). Previous analyses of mortality amenable to health care only focused on high-income countries and faced several methodological challenges. In the present analysis, we use the highly standardised cause of death and risk factor estimates generated through the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) to improve and expand the quantification of personal health-care access and quality for 195 countries and territories from 1990 to 2015. Methods We mapped the most widely used list of causes amenable to personal health care developed by Nolte and McKee to 32 GBD causes. We accounted for variations in cause of death certification and misclassifications through the extensive data standardisation processes and redistribution algorithms developed for GBD. To isolate the effects of personal health-care access and quality, we risk-standardised cause-specific mortality rates for each geography-year by removing the joint effects of local environmental and behavioural risks, and adding back the global levels of risk exposure as estimated for GBD 2015. We employed principal component analysis to create a single, interpretable summary measure-the Healthcare Quality and Access (HAQ) Index-on a scale of 0 to 100. The HAQ Index showed strong convergence validity as compared with other health-system indicators, including health expenditure per capita (r= 0.88), an index of 11 universal health coverage interventions (r= 0.83), and human resources for health per 1000 (r= 0.77). We used free disposal hull analysis with bootstrapping to produce a frontier based on the relationship between the HAQ Index and the Socio-demographic Index (SDI), a measure of overall development consisting of income per capita, average years of education, and total fertility rates. This frontier allowed us to better quantify the maximum levels of personal health-care access and quality achieved across the development spectrum, and pinpoint geographies where gaps between observed and potential levels have narrowed or widened over time. Findings Between 1990 and 2015, nearly all countries and territories saw their HAQ Index values improve; nonetheless, the difference between the highest and lowest observed HAQ Index was larger in 2015 than in 1990, ranging from 28.6 to 94.6. Of 195 geographies, 167 had statistically significant increases in HAQ Index levels since 1990, with South Korea, Turkey, Peru, China, and the Maldives recording among the largest gains by 2015. Performance on the HAQ Index and individual causes showed distinct patterns by region and level of development, yet substantial heterogeneities emerged for several causes, including cancers in highest-SDI countries; chronic kidney disease, diabetes, diarrhoeal diseases, and lower respiratory infections among middle-SDI countries; and measles and tetanus among lowest-SDI countries. While the global HAQ Index average rose from 40.7 (95% uncertainty interval, 39.0-42.8) in 1990 to 53.7 (52.2-55.4) in 2015, far less progress occurred in narrowing the gap between observed HAQ Index values and maximum levels achieved; at the global level, the difference between the observed and frontier HAQ Index only decreased from 21.2 in 1990 to 20.1 in 2015. If every country and territory had achieved the highest observed HAQ Index by their corresponding level of SDI, the global average would have been 73.8 in 2015. Several countries, particularly in eastern and western sub-Saharan Africa, reached HAQ Index values similar to or beyond their development levels, whereas others, namely in southern sub-Saharan Africa, the Middle East, and south Asia, lagged behind what geographies of similar development attained between 1990 and 2015. Interpretation This novel extension of the GBD Study shows the untapped potential for personal health-care access and quality improvement across the development spectrum. Amid substantive advances in personal health care at the national level, heterogeneous patterns for individual causes in given countries or territories suggest that few places have consistently achieved optimal health-care access and quality across health-system functions and therapeutic areas. This is especially evident in middle-SDI countries, many of which have recently undergone or are currently experiencing epidemiological transitions. The HAQ Index, if paired with other measures of health-systemcharacteristics such as intervention coverage, could provide a robust avenue for tracking progress on universal health coverage and identifying local priorities for strengthening personal health-care quality and access throughout the world. Copyright (C) The Author(s). Published by Elsevier Ltd.Peer reviewe

    Global, regional, and national age-sex-specific mortality and life expectancy, 1950-2017: a systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    Background: Assessments of age-specific mortality and life expectancy have been done by the UN Population Division, Department of Economics and Social Affairs (UNPOP), the United States Census Bureau, WHO, and as part of previous iterations of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD). Previous iterations of the GBD used population estimates from UNPOP, which were not derived in a way that was internally consistent with the estimates of the numbers of deaths in the GBD. The present iteration of the GBD, GBD 2017, improves on previous assessments and provides timely estimates of the mortality experience of populations globally. Methods: The GBD uses all available data to produce estimates of mortality rates between 1950 and 2017 for 23 age groups, both sexes, and 918 locations, including 195 countries and territories and subnational locations for 16 countries. Data used include vital registration systems, sample registration systems, household surveys (complete birth histories, summary birth histories, sibling histories), censuses (summary birth histories, household deaths), and Demographic Surveillance Sites. In total, this analysis used 8259 data sources. Estimates of the probability of death between birth and the age of 5 years and between ages 15 and 60 years are generated and then input into a model life table system to produce complete life tables for all locations and years. Fatal discontinuities and mortality due to HIV/AIDS are analysed separately and then incorporated into the estimation. We analyse the relationship between age-specific mortality and development status using the Socio-demographic Index, a composite measure based on fertility under the age of 25 years, education, and income. There are four main methodological improvements in GBD 2017 compared with GBD 2016: 622 additional data sources have been incorporated; new estimates of population, generated by the GBD study, are used; statistical methods used in different components of the analysis have been further standardised and improved; and the analysis has been extended backwards in time by two decades to start in 1950. Findings: Globally, 18·7% (95% uncertainty interval 18·4–19·0) of deaths were registered in 1950 and that proportion has been steadily increasing since, with 58·8% (58·2–59·3) of all deaths being registered in 2015. At the global level, between 1950 and 2017, life expectancy increased from 48·1 years (46·5–49·6) to 70·5 years (70·1–70·8) for men and from 52·9 years (51·7–54·0) to 75·6 years (75·3–75·9) for women. Despite this overall progress, there remains substantial variation in life expectancy at birth in 2017, which ranges from 49·1 years (46·5–51·7) for men in the Central African Republic to 87·6 years (86·9–88·1) among women in Singapore. The greatest progress across age groups was for children younger than 5 years; under-5 mortality dropped from 216·0 deaths (196·3–238·1) per 1000 livebirths in 1950 to 38·9 deaths (35·6–42·83) per 1000 livebirths in 2017, with huge reductions across countries. Nevertheless, there were still 5·4 million (5·2–5·6) deaths among children younger than 5 years in the world in 2017. Progress has been less pronounced and more variable for adults, especially for adult males, who had stagnant or increasing mortality rates in several countries. The gap between male and female life expectancy between 1950 and 2017, while relatively stable at the global level, shows distinctive patterns across super-regions and has consistently been the largest in central Europe, eastern Europe, and central Asia, and smallest in south Asia. Performance was also variable across countries and time in observed mortality rates compared with those expected on the basis of development. Interpretation: This analysis of age-sex-specific mortality shows that there are remarkably complex patterns in population mortality across countries. The findings of this study highlight global successes, such as the large decline in under-5 mortality, which reflects significant local, national, and global commitment and investment over several decades. However, they also bring attention to mortality patterns that are a cause for concern, particularly among adult men and, to a lesser extent, women, whose mortality rates have stagnated in many countries over the time period of this study, and in some cases are increasing

    Mechanisms on HIV-1 core assembly

    No full text

    Studies on HIV-1 core assembly

    Get PDF
    The main objective of this thesis was to define the roles of Gag (p55), in particular, the capsid (CA, p24) protein in human immunodeficiency virus type 1 (HIV-1) particle assembly. More specifically, i) to determine the relative contribution of some specific residues and/or sequences in HIV-1 CA core assembly and virus release, ii) to characterize the importance of two conserved residues with quite opposing intra-molecular contacts with other CA residues in capsid assembly iii) to define the role and significance of a specific amino acid involved in formation of a conserved β-hairpin structure in HIV-1 capsid assembly, and iv) to define the active antiviral metabolite of an antiviral tripeptide amide previously found to affect HIV-1 capsid assembly and infectivity. The HIV-1 CA plays a crucial role in both assembly and maturation of the virion. Two highly conserved sequences located in the C-terminal domain (CTD) of HIV-1 CA were investigated with site directed mutagenesis, a valuable technique used widely to study the structure and function of CA in HIV-1 capsid assembly. We showed that mutations of specific residues within the two conserved sequences in the C-terminal domain could affect viral protein expression, virus assembly, release and infectivity. In addition, we showed that these residues are essential for proper proteolytic processing of the Gag/Gag-Pol precursors in a cell-type dependent manner, as well as, for proper morphogenesis of HIV-1 particles. The importance of two particular amino acid residues, Glu98 and Glu187, located within each of the two CA domains were investigated. In contrast to Glu98 which has no intra-molecular contacts, Glu187 has extensive intra-molecular contacts with eight other CA residues. Furthermore, Glu187 has been shown to be important for a salt-bridge formation in a head-to-tail dimer of HIV-1 CA. We performed detailed analysis to assess the potential effects of mutating these two Glu residues for Ala and Gly, respectively, on Gag processing, virus infectivity, viral cDNA production and virus morphology. In spite of the lack of contact with the other residues of CA as revealed by the structural data, Glu98 was shown herein as a critical element in the action of CA to correctly form mature cores. Our data also showed that the two residues in the study displayed deviated biological properties than the ones being predicted from crystallography and/or analysis of inter-atomic contacts. Thus, Glu187 was found to be dispensable although the residue was predicted to be important for the N-C CA-dimer formation. As the CA CTD dimer formation is one of the fundamental interactions driving CA multimerization, which also involves hexamerization of the CA N-terminal domains (NTD), we investigated the role and significance of aspartate 51 (D51) which previously has been shown to play a key role in virus assembly and maturation by forming a β-hairpin structure that is highly conserved among retroviruses. In addition to the D51A substitution reported elsewhere, we showed that substitutions of aspartate with glutamate, glutamine, or asparagine, three amino acid residues that are structurally close and have similar properties in protein as aspartate, could not rescue the structural integrity of the protein. It has previously been shown that addition of the tripeptide GPG-amide, corresponding to a motif found in both conserved sequences described above, could induce non-infectious HIV-1 particles with aberrant core structures. We identified and demonstrated that it is a metabolite of GPG-amide that affects HIV-1 infectivity. This metabolite was purified and its structure determined by NMR to be alpha-hydroxy-glycineamide (alpha-HGA). alpha-HGA binds to the HIV-1 CA and affects its ability to assemble into tubular or core structures in vitro and in vivo. As an antiviral, alpha-HGA has an unusually simple structure, a pronounced antiviral specificity and a novel mechanism of antiviral action. In conclusion, our findings suggest that mutations in CA are lethal when affecting proper CA core assembly and that the semi-stable non-covalent protein interactions in HIV-1 CA can be specifically disrupted by small molecules, such as alpha-HGA
    corecore