63 research outputs found

    Restored Agricultural Wetlands in central Iowa: Habitat Quality and Amphibian Response

    Get PDF
    Amphibians are declining throughout the United States and worldwide due, partly, to habitat loss. Conservation practices on the landscape restore wetlands to denitrify tile drainage effluent and restore ecosystem services. Understanding how water quality, hydroperiod, predation, and disease affect amphibians in restored wetlands is central to maintaining healthy amphibian populations in the region. We examined the quality of amphibian habitat in restored wetlands relative to reference wetlands by comparing species richness, developmental stress, and adult leopard frog (Lithobates pipiens) survival probabilities to a suite of environmental metrics. Although measured habitat variables differed between restored and reference wetlands, differences appeared to have sub-lethal rather than lethal effects on resident amphibian populations. There were few differences in amphibian species richness and no difference in estimated survival probabilities between wetland types. Restored wetlands had more nitrate and alkaline pH, longer hydroperiods, and were deeper, whereas reference wetlands had more amphibian chytrid fungus zoospores in water samples and resident amphibians exhibited increased developmental stress. Restored and reference wetlands are both important components of the landscape in central Iowa and maintaining a complex of fish-free wetlands with a variety of hydroperiods will likely contribute to the persistence of amphibians in this landscape

    Primary Hyperparathyroidism Influences the Expression of Inflammatory and Metabolic Genes in Adipose Tissue

    Get PDF
    Background: Primary hyperparathyroidism (PHPT) is characterised by increased production of parathyroid hormone (PTH) resulting in elevated serum calcium levels. The influence on bone metabolism with altered bone resorption is the most studied clinical condition in PHPT. In addition to this, patients with PHPT are at increased risk of non-skeletal diseases, such as impaired insulin sensitivity, arterial hypertension and increased risk of death by cardiovascular diseases (CVD), possibly mediated by a chronic low-grade inflammation. The aim of this study was to investigate whether adipose tissue reflects the low-grade inflammation observed in PHPT patients. Methodology/Principal Findings: Subcutaneous fat tissue from the neck was sampled from 16 non-obese patients with PHPT and from 16 patients operated for benign thyroid diseases, serving as weight-matched controls. RNA was extracted and global gene expression was analysed with Illumina BeadArray Technology. We found 608 differentially expressed genes (q-value,0.05), of which 347 were up-regulated and 261 were down-regulated. Gene ontology analysis showed that PHPT patients expressed increased levels of genes involved in immunity and defense (e.g. matrix metallopeptidase 9, S100 calcium binding protein A8 and A9, CD14, folate receptor 2), and reduced levels of genes involved in metabolic processes. Analysis of transcription factor binding sites present in the differentially expressed genes corroborated the up-regulation of inflammatory processes. Conclusions/Significance: Our findings demonstrate that PHPT strongly influences gene regulation in fat tissue, which may result in altered adipose tissue function and release of pathogenic factors that increase the risk of CVD

    The Effects of Governmental Protected Areas and Social Initiatives for Land Protection on the Conservation of Mexican Amphibians

    Get PDF
    Traditionally, biodiversity conservation gap analyses have been focused on governmental protected areas (PAs). However, an increasing number of social initiatives in conservation (SICs) are promoting a new perspective for analysis. SICs include all of the efforts that society implements to conserve biodiversity, such as land protection, from private reserves to community zoning plans some of which have generated community-protected areas. This is the first attempt to analyze the status of conservation in Latin America when some of these social initiatives are included. The analyses were focused on amphibians because they are one of the most threatened groups worldwide. Mexico is not an exception, where more than 60% of its amphibians are endemic. We used a niche model approach to map the potential and real geographical distribution (extracting the transformed areas) of the endemic amphibians. Based on remnant distribution, all the species have suffered some degree of loss, but 36 species have lost more than 50% of their potential distribution. For 50 micro-endemic species we could not model their potential distribution range due to the small number of records per species, therefore the analyses were performed using these records directly. We then evaluated the efficiency of the existing set of governmental protected areas and established the contribution of social initiatives (private and community) for land protection for amphibian conservation. We found that most of the species have some proportion of their potential ecological niche distribution protected, but 20% are not protected at all within governmental PAs. 73% of endemic and 26% of micro-endemic amphibians are represented within SICs. However, 30 micro-endemic species are not represented within either governmental PAs or SICs. This study shows how the role of land conservation through social initiatives is therefore becoming a crucial element for an important number of species not protected by governmental PAs

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
    corecore