368 research outputs found

    Multipotent Basal Stem Cells, Maintained in Localized Proximal Niches, Support Directed Long-Ranging Epithelial Flows in Human Prostates

    Get PDF
    Sporadic mitochondrial DNA mutations serve as clonal marks providing access to the identity and lineage potential of stem cells within human tissues. By combining quantitative clonal mapping with 3D reconstruction of adult human prostates, we show that multipotent basal stem cells, confined to discrete niches in juxta-urethral ducts, generate bipotent basal progenitors in directed epithelial migration streams. Basal progenitors are then dispersed throughout the entire glandular network, dividing and differentiating to replenish the loss of apoptotic luminal cells. Rare lineage-restricted luminal stem cells, and their progeny, are confined to proximal ducts and provide only minor contribution to epithelial homeostasis. In situ cell capture from clonal maps identified delta homolog 1 (DLK1) enrichment of basal stem cells, which was validated in functional spheroid assays. This study establishes significant insights into niche organization and function of prostate stem and progenitor cells, with implications for disease.This work was supported by grants from The Royal College of Surgeons of England and a Cancer Research UK Clinician Scientist Fellowship (C10169/A12173). This work was also supported by the Wellcome Trust (grant 098357/Z/12/Z to B.D.S. and grant 110326/Z/15/Z to E.H.). E.H. is funded by a Junior Research Fellowship from Trinity College, Cambridge, a Sir Henry Wellcome Fellowship from the Wellcome Trust and acknowledges the Bettencourt-Schueller Young Researcher Prize for support. L.C.G., D.M.T., and R.W.T. are supported by the Wellcome Trust Centre Strategic Award (096919/Z/11/Z). R.W.T. is also supported by the Medical Research Council (MRC) Centre for Neuromuscular Diseases (G0601943), the Lily Foundation, and the UK National Health Service (NHS) Highly Specialised “Rare Mitochondrial Disorders of Adults and Children” Service. L.C.G. and D.M.T. receive support from the Newcastle University Centre for Ageing and Vitality funded by the Biotechnology and Biological Sciences Research Council (BBSRC), the Engineering and Physical Sciences Research Council (EPSRC), the Economic and Social Research Council (ESRC), and MRC as part of the cross-council Lifelong Health and Wellbeing Initiative

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Myd88 Is Required for an Antibody Response to Retroviral Infection

    Get PDF
    Although retroviruses have been extensively studied for many years, basic questions about how retroviral infections are detected by the immune system and which innate pathways are required for the generation of immune responses remain unanswered. Defining these pathways and how they contribute to the anti-retroviral immune responses would assist in the development of more effective vaccines for retroviral pathogens such as HIV. We have investigated the roles played by CD11c+ dendritic cells (DCs) and by Toll-like receptor (TLR) signaling pathways in the generation of an anti-retroviral immune response against a mouse retroviral pathogen, Friend murine leukemia virus (F-MLV). Specific deletion of DCs during F-MLV infection caused a significant increase in viral titers at 14 days post-infection, indicating the importance of DCs in immune control of the infection. Similarly, Myd88 knockout mice failed to control F-MLV, and sustained high viral titers (107 foci/spleen) for several months after infection. Strikingly, both DC-depleted mice and Myd88 knockout mice exhibited only a partial reduction of CD8+ T cell responses, while the IgG antibody response to F-MLV was completely lost. Furthermore, passive transfer of immune serum from wild-type mice to Myd88 knockout mice rescued control of F-MLV. These results identify TLR signaling and CD11c+ DCs as playing critical roles in the humoral response to retroviruses

    Search for direct stau production in events with two hadronic tau-leptons in root s=13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of the supersymmetric partners ofτ-leptons (staus) in final stateswith two hadronically decayingτ-leptons is presented. The analysis uses a dataset of pp collisions corresponding to an integrated luminosity of139fb−1, recorded with the ATLAS detector at the LargeHadron Collider at a center-of-mass energy of 13 TeV. No significant deviation from the expected StandardModel background is observed. Limits are derived in scenarios of direct production of stau pairs with eachstau decaying into the stable lightest neutralino and oneτ-lepton in simplified models where the two staumass eigenstates are degenerate. Stau masses from 120 GeV to 390 GeV are excluded at 95% confidencelevel for a massless lightest neutralino

    Genetic association study of adiposity and melanocortin-4 receptor (MC4R) common variants: Replication and functional characterization of non-coding regions

    Get PDF
    Common genetic variants 3′ of MC4R within two large linkage disequilibrium (LD) blocks spanning 288 kb have been associated with common and rare forms of obesity. This large association region has not been refined and the relevant DNA segments within the association region have not been identified. In this study, we investigated whether common variants in the MC4R gene region were associated with adiposity-related traits in a biracial population-based study. Single nucleotide polymorphisms (SNPs) in the MC4R region were genotyped with a custom array and a genome-wide array and associations between SNPs and five adiposity-related traits were determined using race-stratified linear regression. Previously reported associations between lower BMI and the minor alleles of rs2229616/Val103Ile and rs52820871/Ile251Leu were replicated in white female participants. Among white participants, rs11152221 in a proximal 3′ LD block (closer to MC4R) was significantly associated with multiple adiposity traits, but SNPs in a distal 309 LD block (farther from MC4R ) were not. In a case-control study of severe obesity, rs11152221 was significantly associated. The association results directed our follow-up studies to the proximal LD block downstream of MC4R. By considering nucleotide conservation, the significance of association, and proximity to the MC4R gene, we identified a candidate MC4R regulatory region. This candidate region was sequenced in 20 individuals from a study of severe obesity in an attempt to identify additional variants, and the candidate region was tested for enhancer activity using in vivo enhancer assays in zebrafish and mice. Novel variants were not identified by sequencing and the candidate region did not drive reporter gene expression in zebrafish or mice. The identification of a putative insulator in this region could help to explain the challenges faced in this study and others to link SNPs associated with adiposity to altered MC4R expression. © 2014 Evans et al

    T-cell Subset Regulation in Atopy

    Get PDF
    Presentation of processed allergen by antigen-presenting cells to T-helper (Th) lymphocytes, which is influenced costimulatory signals, cytokines, chemokines, and regulatory T cells (Tregs), determines the development of different types of T-cell immunity. The discovery of Tregs revolutionized the primary concepts of immune regulation interpreted within the framework of a binary Th1/Th2 paradigm. Tregs play a central role in the maintenance of peripheral homeostasis, the establishment of controlled immune responses, and the inhibition of allergen-specific effector cells. Recently, some other T-cell subsets appeared, including Th17 and Th9 cells, which control local tissue inflammation through upregulation of proinflammatory cytokines and chemokines. This review aims to discuss our understanding of the T-cell subset reciprocal interaction in atopy

    Divergent Pro-Inflammatory Profile of Human Dendritic Cells in Response to Commensal and Pathogenic Bacteria Associated with the Airway Microbiota

    Get PDF
    Recent studies using culture-independent methods have characterized the human airway microbiota and report microbial communities distinct from other body sites. Changes in these airway bacterial communities appear to be associated with inflammatory lung disease, yet the pro-inflammatory properties of individual bacterial species are unknown. In this study, we compared the immune stimulatory capacity on human monocyte-derived dendritic cells (DCs) of selected airway commensal and pathogenic bacteria predominantly associated with lungs of asthma or COPD patients (pathogenic Haemophillus spp. and Moraxella spp.), healthy lungs (commensal Prevotella spp.) or both (commensal Veillonella spp. and Actinomyces spp.). All bacteria were found to induce activation of DCs as demonstrated by similar induction of CD83, CD40 and CD86 surface expression. However, asthma and COPD-associated pathogenic bacteria provoked a 3–5 fold higher production of IL-23, IL-12p70 and IL-10 cytokines compared to the commensal bacteria. Based on the differential cytokine production profiles, the studied airway bacteria could be segregated into three groups (Haemophilus spp. and Moraxella spp. vs. Prevotella spp. and Veillonella spp. vs. Actinomyces spp.) reflecting their pro-inflammatory effects on DCs. Co-culture experiments found that Prevotella spp. were able to reduce Haemophillus influenzae-induced IL-12p70 in DCs, whereas no effect was observed on IL-23 and IL-10 production. This study demonstrates intrinsic differences in DC stimulating properties of bacteria associated with the airway microbiota

    Allergen Uptake, Activation, and IL-23 Production by Pulmonary Myeloid DCs Drives Airway Hyperresponsiveness in Asthma-Susceptible Mice

    Get PDF
    Maladaptive, Th2-polarized inflammatory responses are integral to the pathogenesis of allergic asthma. As regulators of T cell activation, dendritic cells (DCs) are important mediators of allergic asthma, yet the precise signals which render endogenous DCs “pro-asthmatic”, and the extent to which these signals are regulated by the pulmonary environment and host genetics, remains unclear. Comparative phenotypic and functional analysis of pulmonary DC populations in mice susceptible (A/J), or resistant (C3H) to experimental asthma, revealed that susceptibility to airway hyperresponsiveness is associated with preferential myeloid DC (mDC) allergen uptake, and production of Th17-skewing cytokines (IL-6, IL-23), whereas resistance is associated with increased allergen uptake by plasmacytoid DCs. Surprisingly, adoptive transfer of syngeneic HDM-pulsed bone marrow derived mDCs (BMDCs) to the lungs of C3H mice markedly enhanced lung IL-17A production, and rendered them susceptible to allergen-driven airway hyperresponsiveness. Characterization of these BMDCs revealed levels of antigen uptake, and Th17 promoting cytokine production similar to that observed in pulmonary mDCs from susceptible A/J mice. Collectively these data demonstrate that the lung environment present in asthma-resistant mice promotes robust pDC allergen uptake, activation, and limits Th17-skewing cytokine production responsible for driving pathologic T cell responses central to the development of allergen-induced airway hyperresponsiveness

    The effector T cell response to influenza infection

    Get PDF
    Influenza virus infection induces a potent initial innate immune response, which serves to limit the extent of viral replication and virus spread. However, efficient (and eventual) viral clearance within the respiratory tract requires the subsequent activation, rapid proliferation, recruitment, and expression of effector activities by the adaptive immune system, consisting of antibody producing B cells and influenza-specific T lymphocytes with diverse functions. The ensuing effector activities of these T lymphocytes ultimately determine (along with antibodies) the capacity of the host to eliminate the viruses and the extent of tissue damage. In this review, we describe this effector T cell response to influenza virus infection. Based on information largely obtained in experimental settings (i.e., murine models), we will illustrate the factors regulating the induction of adaptive immune T cell responses to influenza, the effector activities displayed by these activated T cells, the mechanisms underlying the expression of these effector mechanisms, and the control of the activation/differentiation of these T cells, in situ, in the infected lungs
    corecore