174 research outputs found

    Inter- and intramolecular Diels-Alder/retro-Diels-Alder reactions of 4-silylated oxazoles

    Get PDF
    4-Silylated oxazoles have been shown to undergo inter- and intramolecular Diels-Alder/retro-Diels-Alder reactions with electron-poor alkynes to generate polysubstituted furans. The ease of synthesis of the requisite oxazoles by the rhodium-catalysed condensation of nitriles with silylated diazoacetate greatly increases the scope of this reaction

    Synthesis of highly substituted allenylsilanes by alkylidenation of silylketenes

    Get PDF
    BACKGROUND: Allenylsilanes are useful intermediates in organic synthesis. An attractive, convergent but little used approach for their synthesis is the alkylidenation of stable silylketenes. Reactions thus far have been limited to the use of unsubstituted silylketenes (or equivalents) with stabilised or semi-stabilised ylides only. The current study explores the reactions of substituted ketenes prepared through rhodium(II)-mediated rearrangement of silylated diazoketones. RESULTS: A range of novel 1,3-disubstituted and 1,3,3-trisubstituted allenylsilanes were prepared using stabilised and semi-stabilised ylides. Alkylidenation with non-stabilised phosphorus ylides was not viable, but the use of titanium-based methylenating reagents was successful, allowing access to 1-substituted allenylsilanes. CONCLUSION: Many novel allenylsilanes may be accessed by alkylidenation of substituted silylketenes. Importantly, for the first time, simple methylenation of silylketenes has been achieved using titanium carbenoid-based reagents

    GG-Strands

    Get PDF
    A GG-strand is a map g(t,s):R×RGg(t,{s}):\,\mathbb{R}\times\mathbb{R}\to G for a Lie group GG that follows from Hamilton's principle for a certain class of GG-invariant Lagrangians. The SO(3)-strand is the GG-strand version of the rigid body equation and it may be regarded physically as a continuous spin chain. Here, SO(3)KSO(3)_K-strand dynamics for ellipsoidal rotations is derived as an Euler-Poincar\'e system for a certain class of variations and recast as a Lie-Poisson system for coadjoint flow with the same Hamiltonian structure as for a perfect complex fluid. For a special Hamiltonian, the SO(3)KSO(3)_K-strand is mapped into a completely integrable generalization of the classical chiral model for the SO(3)-strand. Analogous results are obtained for the Sp(2)Sp(2)-strand. The Sp(2)Sp(2)-strand is the GG-strand version of the Sp(2)Sp(2) Bloch-Iserles ordinary differential equation, whose solutions exhibit dynamical sorting. Numerical solutions show nonlinear interactions of coherent wave-like solutions in both cases. Diff(R){\rm Diff}(\mathbb{R})-strand equations on the diffeomorphism group G=Diff(R)G={\rm Diff}(\mathbb{R}) are also introduced and shown to admit solutions with singular support (e.g., peakons).Comment: 35 pages, 5 figures, 3rd version. To appear in J Nonlin Sc

    The Relation Between the Surface Brightness and the Diameter for Galactic Supernova Remnants

    Full text link
    In this work, we have constructed a relation between the surface brightness (Σ\Sigma) and diameter (D) of Galactic C- and S-type supernova remnants (SNRs). In order to calibrate the Σ\Sigma-D dependence, we have carefully examined some intrinsic (e.g. explosion energy) and extrinsic (e.g. density of the ambient medium) properties of the remnants and, taking into account also the distance values given in the literature, we have adopted distances for some of the SNRs which have relatively more reliable distance values. These calibrator SNRs are all C- and S-type SNRs, i.e. F-type SNRs (and S-type SNR Cas A which has an exceptionally high surface brightness) are excluded. The Sigma-D relation has 2 slopes with a turning point at D=36.5 pc: Σ\Sigma(at 1 GHz)=8.46.3+19.5^{+19.5}_{-6.3}×1012\times10^{-12} D5.990.33+0.38^{{-5.99}^{+0.38}_{-0.33}} Wm2^{-2}Hz1^{-1}ster1^{-1} (for Σ\Sigma3.7×1021\le3.7\times10^{-21} Wm2^{-2}Hz1^{-1}ster1^{-1} and D\ge36.5 pc) and Σ\Sigma(at 1 GHz)=2.71.4+2.1^{+2.1}_{-1.4}×\times 1017^{-17} D2.470.16+0.20^{{-2.47}^{+0.20}_{-0.16}} Wm2^{-2}Hz1^{-1}ster1^{-1} (for Σ\Sigma>3.7×1021>3.7\times10^{-21} Wm2^{-2}Hz1^{-1}ster1^{-1} and D<<36.5 pc). We discussed the theoretical basis for the Σ\Sigma-D dependence and particularly the reasons for the change in slope of the relation were stated. Added to this, we have shown the dependence between the radio luminosity and the diameter which seems to have a slope close to zero up to about D=36.5 pc. We have also adopted distance and diameter values for all of the observed Galactic SNRs by examining all the available distance values presented in the literature together with the distances found from our Σ\Sigma-D relation.Comment: 45 pages, 2 figures, accepted for publication in Astronomical and Astrophysical Transaction

    Synthesis and characterisation of novel fluorescent imides by a rhodium(III)-catalysed C-H activation/annulation cascade

    Get PDF
    Regioselective rhodium(III)-catalysed C-H activation/annulation of O-pivaloyl benzoylhydroxamates with ortho-alkynylbenzoate esters facilitates the rapid preparation of a novel class of fluorophores based on the isoindolo[2,1-b]isoquinoline-5,7-dione core. The photophysical, electrochemical and coordination properties of these novel structures are investigated

    Measurement of the correlation between flow harmonics of different order in lead-lead collisions at √sNN = 2.76 TeV with the ATLAS detector

    Get PDF
    Correlations between the elliptic or triangular flow coefficients vm (m=2 or 3) and other flow harmonics vn (n=2 to 5) are measured using √sNN=2.76 TeV Pb+Pb collision data collected in 2010 by the ATLAS experiment at the LHC, corresponding to an integrated luminosity of 7 μb−1. The vm−vn correlations are measured in midrapidity as a function of centrality, and, for events within the same centrality interval, as a function of event ellipticity or triangularity defined in a forward rapidity region. For events within the same centrality interval, v3 is found to be anticorrelated with v2 and this anticorrelation is consistent with similar anticorrelations between the corresponding eccentricities, ε2 and ε3. However, it is observed that v4 increases strongly with v2, and v5 increases strongly with both v2 and v3. The trend and strength of the vm−vn correlations for n=4 and 5 are found to disagree with εm−εn correlations predicted by initial-geometry models. Instead, these correlations are found to be consistent with the combined effects of a linear contribution to vn and a nonlinear term that is a function of v22 or of v2v3, as predicted by hydrodynamic models. A simple two-component fit is used to separate these two contributions. The extracted linear and nonlinear contributions to v4 and v5 are found to be consistent with previously measured event-plane correlations

    Measurement of the cross section for isolated-photon plus jet production in pp collisions at √s=13 TeV using the ATLAS detector

    Get PDF
    The dynamics of isolated-photon production in association with a jet in proton–proton collisions at a centre-of-mass energy of 13 TeV are studied with the ATLAS detector at the LHC using a dataset with an integrated luminosity of 3.2 fb−1. Photons are required to have transverse energies above 125 GeV. Jets are identified using the anti- algorithm with radius parameter and required to have transverse momenta above 100 GeV. Measurements of isolated-photon plus jet cross sections are presented as functions of the leading-photon transverse energy, the leading-jet transverse momentum, the azimuthal angular separation between the photon and the jet, the photon–jet invariant mass and the scattering angle in the photon–jet centre-of-mass system. Tree-level plus parton-shower predictions from Sherpa and Pythia as well as next-to-leading-order QCD predictions from Jetphox and Sherpa are compared to the measurements

    Search for vectorlike B quarks in events with one isolated lepton, missing transverse momentum, and jets at √s = 8 TeV with the ATLAS detector

    Get PDF
    A search has been performed for pair production of heavy vectorlike down-type (B) quarks. The analysis explores the lepton-plus-jets final state, characterized by events with one isolated charged lepton (electron or muon), significant missing transverse momentum, and multiple jets. One or more jets are required to be tagged as arising from b quarks, and at least one pair of jets must be tagged as arising from the hadronic decay of an electroweak boson. The analysis uses the full data sample of pp collisions recorded in 2012 by the ATLAS detector at the LHC, operating at a center-of-mass energy of 8 TeV, corresponding to an integrated luminosity of 20.3 fb −1 . No significant excess of events is observed above the expected background. Limits are set on vectorlike B production, as a function of the B branching ratios, assuming the allowable decay modes are B → Wt/Zb/Hb. In the chiral limit with a branching ratio of 100% for the decay B → Wt, the observed (expected) 95% C.L. lower limit on the vectorlike B mass is 810 GeV (760 GeV). In the case where the vectorlike B quark has branching ratio values corresponding to those of an SU(2) singlet state, the observed (expected) 95% C.L. lower limit on the vectorlike B mass is 640 GeV (505 GeV). The same analysis, when used to investigate pair production of a colored, charge 5/3 exotic fermion T 5/3 , with subsequent decay T 5/3 → Wt, sets an observed (expected) 95% C.L. lower limit on the T 5/3 mass of 840 GeV (780 GeV)

    Rhodium-catalysed connective synthesis of diverse reactive probes bearing S(VI) electrophilic warheads

    Get PDF
    The value of small molecules that chemically modify proteins is increasingly being recognised and utilised in both chemical biology and drug discovery. The discovery of such chemical tools may be enabled by screening diverse sets of reactive probes. Most existing sets of reactive probes are armed with cysteine-directed warheads, a limitation that we sought to address. A connective synthesis was developed in which α-diazoamide substrates, armed with a S(VI) warhead, were reacted with diverse co-substrates. A high-throughput approach was used to identify promising substrate/co-substrate/catalyst combinations which were then prioritised for purification by mass-directed HPLC to yield a total of thirty reactive probes. The structural diversity of the probe set was increased by the multiplicity of reaction types between rhodium carbenoids and the many different co-substrate classes, and the catalyst-driven selectivity between these pathways. The probes were screened for activity against Trypanosma brucei, and four probes with promising anti-trypanosomal activity were identified. Remarkably, the synthetic approach was compatible with building blocks bearing three different S(VI) warheads, enabling the direct connective synthesis of diverse reactive probes armed with non-cysteine-directed warheads. Reactive probes that are synthetically accessible using our approach may be of value in the discovery of small molecule modifiers for investigating and engineering proteins

    How Functional Groups Influence Asphaltene Aggregation: Molecular Simulations and Small-Angle Neutron Scattering

    Get PDF
    Asphaltenes are polycyclic aromatic molecules found in high-molecular-weight fractions of crude oil. They dissolve in aromatic solvents like toluene but not in aliphatic solvents like heptane. Low solubility leads to aggregate formation and many problems in transport applications. Natural asphaltene fractions contain complex mixtures of molecules that vary widely between sources of crude oil, and so the chemical and structural properties are difficult to characterize. Herein, three synthetic asphaltenes containing different oxidation states of sulfur in binary mixtures of toluene and heptane are studied. Aggregate formation is investigated using a combination of small-angle neutron scattering (SANS) and molecular dynamics (MD) simulations. The extent of aggregation is found to depend strongly on both the composition of the solvent and the functionality of the sulfur atom. A benzothiophene-functionalized asphaltene, without any oxygen, forms nanoaggregates in toluene that do not change significantly on addition of heptane. In contrast, asphaltenes containing the sulfoxide or sulfone analogs form nanoaggregates in toluene and much larger clusters above 40% by volume heptane content, with the initial nanoaggregates of the sulfone being slightly larger. Such behavior is apparent in both measured and simulated scattering profiles, and while these techniques probe different length scales, the results are consistent. The microscopic structures of the simulated aggregates are detailed. In systems with low heptane content, the asphaltenes form small clusters of 2-4 molecules, depending on the functionality. In systems with greater heptane content, the sulfoxide and sulfone form larger clusters. The variations in clustering behavior between functional groups and solvents are attributed mainly to the electrostatic interactions between the polar sulfur-containing functional groups, which stabilize “head-to-tail” configurations in the sulfoxide aggregates and more complex branched structures in the sulfone aggregates
    corecore