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G-Strands

Darryl D. Holm1, Rossen I. Ivanov2, James R. Percival1

Fondly remembering our late friend, Jerry Marsden

Keywords: Solitons, Hamilton’s principle, Integrable Hamiltonian systems, Inverse Spectral Transform (IST),

Chiral models, Spin chains, Euler-Poincaré equations, Sobolev norms, Momentum maps, Bloch-Iserles equation

Abstract

A G-strand is a map g(t, s) : R× R → G for a Lie group G that follows from Hamilton’s
principle for a certain class of G-invariant Lagrangians. The SO(3)-strand is the G-strand
version of the rigid body equation and it may be regarded physically as a continuous spin
chain. Here, SO(3)K-strand dynamics for ellipsoidal rotations is derived as an Euler-Poincaré
system for a certain class of variations and recast as a Lie-Poisson system for coadjoint flow
with the same Hamiltonian structure as for a perfect complex fluid. For a special Hamiltonian,
the SO(3)K-strand is mapped into a completely integrable generalization of the classical
chiral model for the SO(3)-strand. Analogous results are obtained for the Sp(2)-strand. The
Sp(2)-strand is the G-strand version of the Sp(2) Bloch-Iserles ordinary differential equation,
whose solutions exhibit dynamical sorting. Numerical solutions show nonlinear interactions
of coherent wave-like solutions in both cases. Diff(R)-strand equations on the diffeomorphism
group G = Diff(R) are also introduced and shown to admit solutions with singular support
(e.g., peakons).
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1 Euler-Poincaré equations for a G-strand

The Euler-Poincaré (EP) theory of G-strands is an extension of the classical chiral models. The
classical chiral models are nonlinear relativistically invariant Lagrangian field theories on group
manifolds. As such, they are fundamental in theoretical physics. The vast literature of results for
these models is fascinating. For example, it is well known that these models are integrable in 1 + 1
dimensions and possess soliton solutions. See [5, 27, 35, 36, 6, 26, 23, 24] and references therein for
discussions of the many aspects of integrability of the chiral models, including the famous dressing
method for explicitly deriving the soliton solutions of these models, which is given in [36]. The
solitons for the O(3) chiral model are particularly familiar, because this model allows an integrable
reduction to the one-component sine-Gordon equation (e.g. see [26]). Many generalizations of
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these models have been introduced. For example, generalized chiral models with metrics that are
not ad-invariant on the Lie algebra are considered in [29]. Other generalizations of chiral models
for non-semisimple groups are studied in [16]. An integrable chiral model in 2+1 dimensions was
proposed in [32]. Finally, the possibility for fermionic interpretation of the current variables was
explored in [33].

Left G-Invariant Lagrangian. We begin with the following ingredients of EP theory. For more
details and in-depth discussion, see [18, 21].

• Let G be a Lie group. A map g(t, s) : R × R → G has two types of tangent vectors,
ġ := gt ∈ ug and g′ := gs ∈ vg

• Assume that the function L(g, ug, vg) : TG× TG → R is left G-invariant.

• Left G–invariance of L permits us to define l : g× g → R by

l(g−1ug, g
−1vg) = L(g, ug, vg).

Conversely, this relation defines for any l : g × g → R a left G-invariant function L :
TG× TG → R.

• For a map g(t, s) : R× R → G let

X(t, s) := g−1gt(t, s) = g−1ġ(t, s) and Y(t, s) := g−1gs(t, s) = g−1g′(t, s).

Lemma 1.1. The left-trivialized tangent vectors X(t, s) and Y(t, s) at the identity of G satisfy

Yt − Xs = − adXY . (1.1)

Proof. The proof is standard and follows from equality of cross derivatives gts = gst, cf. [18, 21].
As a consequence, equation (1.1) is often called a zero-curvature relation.

Theorem 1.2 (Euler-Poincaré theorem).

With the preceding notation, the following statements are equivalent:

i Hamilton’s variational principle on TG× TG

δ

∫ t2

t1

L(g(t, s), ġ(t, s), g′(t, s)) ds dt = 0 (1.2)

holds, for variations δg(t, s) of g(t, s) vanishing at the endpoints in t and s.

ii The function g(t, s) satisfies Euler–Lagrange equations for L on G, given by

∂L

∂g
− ∂

∂t

∂L

∂gt
− ∂

∂s

∂L

∂gs
= 0 (1.3)
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iii The constrained variational principle1

δ

∫ t2

t1

l(X(t, s),Y(t, s)) ds dt = 0 (1.4)

holds on g× g, using variations of X and Y of the forms

δX = Ż+ adXZ and δY = Z ′ + adYZ , (1.5)

where Z(t, s) ∈ g vanishes at the endpoints.

iv The Euler–Poincaré equations hold on g∗ × g∗

d

dt

δl

δX
− ad∗

X

δl

δX
+

d

ds

δl

δY
− ad∗

Y

δl

δY
= 0 . (1.6)

Proof. The equivalence of i and ii holds for any configuration manifold and so, in particular, it
holds in this case.

Next we show the equivalence of iii and iv. Indeed, using the definitions, integrating by parts,
and taking into account that Z vanishes at the endpoints (t1, s1, t2, s2), allows one to compute the
variation of the integral as

δ

∫ t2

t1

∫ s2

s1

l(X(t, s),Y(t, s)) ds dt =

∫ t2

t1

∫ s2

s1

⟨
δl

δX
, δX

⟩
+

⟨
δl

δY
, δY

⟩
ds dt

=

∫ t2

t1

∫ s2

s1

⟨
δl

δX
, Ż+ adX Z

⟩
+

⟨
δl

δY
,Z ′ + adY Z

⟩
ds dt

= −
∫ t2

t1

∫ s2

s1

⟨
d

dt

δl

δX
− ad∗

X

δl

δX
+

d

ds

δl

δY
− ad∗

Y

δl

δY
,Z

⟩
ds dt .

(1.7)

To understand the notation in the last step, recall that the coadjoint action (ad∗ : g × g∗ → g∗)
is defined as the dual of the adjoint action (ad : g × g → g) with respect to the L2 pairing
⟨ · , · ⟩ : g∗ × g → R by ⟨

ad∗
X

δℓ

δX
, Z
⟩
=
⟨ δℓ

δX
, adXZ

⟩
. (1.8)

Thus, the calculation in (1.7) allows us to conclude that iii and iv are equivalent.

Finally we show that i and iii are equivalent. First note that the left G-invariance of L :
TG × TG → R and the definitions of X(t, s) and Y(t, s) imply that the integrands in (1.2) and
(1.4) are equal. Moreover, all variations δg(t, s) ∈ TG× TG of g(t, s) with fixed endpoints induce
and are induced by variations (δX(t, s), δY(t, s)) ∈ g× g of X(t, s) and Y(t, s) of the form

δX = Ż+ adXZ and δY = Z ′ + adYZ , (1.9)

with Z(t, s) ∈ g vanishing at the endpoints. The relation between δg(t, s) and Z(t, s) is given by
Z(t, s) = g(t, s)−1δg(t, s).

Thus, if i holds, we define Z(t, s) = g−1δg(t, s) for a variation δg(t, s) with fixed endpoints.
Then if we let X = g−1ġ(t, s) and Y = g−1g′(t, s), we have equation (1.9) by the same standard

1As with the basic Euler–Poincaré equations [25], this is not strictly a variational principle in the same sense as
the standard Hamilton’s principle. It is more like the Lagrange d’Alembert principle, because we impose the stated
constraints on the variations allowed [21].
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calculation that produced (1.1). Conversely, if equation (1.9) holds with Z(t, s) vanishing at the
endpoints, we define δg(t, s) = g(t, s) ◦ Z(t, s) and the above proposition guarantees then that
this δg(t, s) is the general variation of g(t, s) vanishing at the endpoints. Hence, i and iii are
equivalent.

Remark 1.3. For a right G-invariant Lagrangian, the results and proofs are the same as above,
except for the sign change appearing in the variations, for which δX = Ż−adXZ and δY = Z ′−adYZ.

Evolutionary G-strand. We now define the fundamental quantity of interest in the remainder
of the paper.

Definition 1.4. A G-strand is an evolutionary map into a Lie group G, g(t, s) : R × R → G,
whose dynamics in t and s may be obtained from Hamilton’s principle for a G-invariant reduced
Lagrangian l : g × g → R, where g is the Lie algebra of the group G. The G-strand system of
evolutionary partial differential equations for a left G-invariant reduced Lagrangian consists of the
the zero-curvature equation (1.1) and the Euler-Poincaré (EP) variational equations (1.6).

Remark 1.5. Subclasses of the G-strand maps contain the harmonic maps into Lie groups studied
mathematically in [31] and the principal chiral models of field theory in theoretical physics, reviewed,
e.g., in [24]. An interpretation of the G-strand equations as the dynamics of a continuous spin
chain is given in [18]. This is the source of the term, ‘strand’. See also [8].

The evolutionary G-strand maps that we consider here arise from Hamilton’s principle δS = 0
with S =

∫
ℓ dt for a left G-invariant Lagrangian ℓ : g× g → R given by

S =

∫ b

a

∫ ∞

−∞
ℓ(X,Y) ds dt , (1.10)

with (X,Y) ∈ g×g where g is the left Lie algebra of the groupG. That is, X and Y are left-trivialized
tangent vectors at the identity of the group, expressible as

X(t, s) = g−1∂tg(t, s) and Y(t, s) = g−1∂sg(t, s) . (1.11)

Remark 1.6. The distinction between between the maps (X,Y) : R×R → g×g and their pointwise
values (X(t, s),Y(t, s)) ∈ g × g will always be clear in context, so that no confusion will arise.
Likewise, for the variational derivatives δℓ

δX
and δℓ

δY
.

Overview and organization of the paper. After this introduction, we shall begin developing
G-strand dynamics in the example of the rotation group SO(3) in Section 2. In a certain case,
this example recovers the well-known completely integrable principal chiral model [35, 36]. We
extend these considerations in Section 3 to the isotropy group SO(3)K of a quadratic form defined
by a symmetric matrix, K = KT . In Section 4, the SO(3)K-strand equations for a certain choice
of Lagrangian are identified with the integrable dynamics associated with another variant of the
principal chiral model, the completely integrable P -chiral model of [3, 34]. Section 5 considers G-
strand dynamics for Sp(2), the two-dimensional symplectic group, and extends the Bloch-Iserles
ordinary differential equations to the case of partial differential equations for the Sp(2)-strand.
By using the ‘gauge’ transformation that diagonalizes K and a series of canonical isomorphisms,
the Sp(2)-strand equations for a particular choice of Lagrangian are also brought into the form of
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the integrable SO(3)K P-chiral model. In each of these cases, we apply the Euler-Poincaré (EP)
framework for group invariant Lagrangians, then pass to the corresponding Lie-Poisson Hamil-
tonian framework, where we are able to identify Hamiltonians that produce integrable dynamics.
Numerical solutions for the O(3) and Sp(2) versions of the P -Chiral models are provided in Section
6. In Section 7 we extend the G-strand framework to the case of diffeomorphisms on the real line
and show that the Diff(R)-strand dynamics admits singular solutions associated with a pair of
momentum maps. Finally, Section 8 summarizes our results and provides some outlook for future
research.

In the standard Euler-Poincaré (EP) framework, one applies the following steps [18, 25].

(a) Write the auxiliary equation for the evolution of Y : R × R → g, obtained by differentiating
its definition with respect to time and invoking equality of cross derivatives.

(b) Use the Euler-Poincaré theorem for left-invariant Lagrangians to obtain the equation of motion
for the quantity ∂ℓ/∂X : R× R → g∗, where g∗ is the dual Lie algebra.

The resulting Euler-Poincaré equation will be an evolutionary partial differential equation
(PDE). We assume homogeneous boundary conditions on X(t, s), Y(t, s) and vanishing end-
point conditions on the variation Z = g−1δg(t, s) ∈ g.

(c) Legendre transform the Lagrangian to obtain the corresponding Hamiltonian. Differentiate
the Hamiltonian and determine its partial derivatives. Write the Euler-Poincaré equation
in Lie-Poisson Hamiltonian form, in terms of the new “angular momentum” variable P =
δℓ/δX ∈ g∗.

(d) Write the Lie-Poisson Hamiltonian formulation for G = SO(3) in terms of R3 vectors.

(e) Apply the EP procedure to other interesting choices of the Lie group G, e.g., Sp(2), and other
choices of the Lagrangian ℓ(X,Y) in Hamilton’s principle.

The EP framework with steps (a)-(e) provides the organization for each of the sections that follow.

2 Euler-Poincaré (EP) procedure for SO(3) chiral model

This Euler-Poincaré procedure in steps (a)-(e) above produces a series of results that are to be
described in this section for the SO(3) chiral model. These are the following.

(a) The auxiliary equation

According to their definitions in (1.11), X(t, s) = g−1∂tg(t, s) and Y(t, s) = g−1∂sg(t, s) are Lie-
algebra-valued functions over R × R. The evolution of Y is obtained from these definitions by
taking the difference of the two equations for the partial derivatives ∂tY(t, s) and ∂sX(t, s) while
invoking equality of cross derivatives. Hence, Y evolves by the adjoint operation,

∂tY(t, s)− ∂sX(t, s) = YX− XY = [Y, X] =: −adXY . (2.1)
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This is the auxiliary equation we seek for Y(t, s). In differential geometry, this relation is called
a zero-curvature equation, because it implies that the curvature vanishes for the Lie-algebra-
valued connection one-form

A = g−1dg(t, s) = Xdt+ Yds .

Equation (2.1) is also expressible in terms of the connection 1-form A as the Mauer-Cartan relation,

dA+ A ∧ A = 0 . (2.2)

See, e.g., [7] for further discussion of such matters in differential geometry.

When augmented by the divergence relation d ∗ A = 0, namely,

d ∗ A = d(Xds+ Ydt) = (∂tX− ∂sY) dt ∧ ds = 0 , (2.3)

equations (2.2) and (2.3) comprise the classical chiral model. Equation (2.3) may also be
understood as a harmonic map from (t, s) ∈ R× R into the Lie group G [31].

(b) The Euler-Poincaré theorem

According to the Euler-Poincaré theorem, Hamilton’s principle δS = 0 for S =
∫ t2
t1

∫ s2
s1

ℓ(X,Y) ds dt
leads to the result in equation (1.7),

∂

∂t

δℓ

δX
− ad∗

X

δℓ

δX
= − ∂

∂s

δℓ

δY
+ ad∗

Y

δℓ

δY
. (2.4)

This is the Euler-Poincaré equation for δℓ/δX ∈ g∗ and it involves δℓ/δY ∈ g∗.

Proposition 2.1. The Euler-Poincaré equation (2.4) may be written as a conservation law for
angular momentum P = δℓ/δX; viz,

∂

∂t

(
Ad∗

g(t,s)−1

δl

δX

)
= − ∂

∂s

(
Ad∗

g(t,s)−1

δl

δY

)
. (2.5)

Proof. This formula follows from a standard result [18]. Namely, let g(s) be a path with parameter
s in a Lie group G and let Q(s) be a path in the dual g∗ of its Lie algebra g. Then the coadjoint
operation Ad∗ : G× g∗ → g∗ satisfies

d

ds
Ad∗

g(s)−1Q(s) = Ad∗
g(s)−1

[
dQ

ds
− ad∗

X(s)Q(s)

]
, (2.6)

where X(s) = g(s)−1ġ(s) ∈ g. Hence, one finds the conservation law (2.5) by using (2.6) on either
side of equation (2.4).

Summary. In summary, the G-strand equations form a system of partial differential equations
(PDE) comprising the Euler-Poincaré equation (2.4) and its auxiliary zero-curvature equation
(2.1), as follows,

∂

∂t

δℓ

δX
+

∂

∂s

δℓ

δY
= ad∗

X

δℓ

δX
+ ad∗

Y

δℓ

δY
, (2.7)

∂

∂t
Y − ∂

∂s
X = − adXY . (2.8)
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Remark 2.2. The generalizations of the G-strand equations (2.7) and (2.8) to higher spatial
dimensions are straightforward.

Proposition 2.3. When the Lagrangian ℓ(X,Y) : g → R is given by

ℓ(X,Y) =
1

2
|X|2 − 1

2
|Y|2 , (2.9)

then Hamilton’s principle recovers the chiral model equation (2.3).

Proof. The proof follows by comparing equations (2.4) and (2.3) for this choice of Lagrangian.

(c) Lie-Poisson Hamiltonian formulation

Legendre transforming the Lagrangian ℓ(X,Y) : g × g → R yields the following Hamiltonian
h(P,Y) : g∗ × g → R

h(P,Y) =
⟨
P , X

⟩
− ℓ(X,Y) . (2.10)

Its partial derivatives are determined from

δh =
⟨
δP ,

δh

δP

⟩
+
⟨ δh

δY
, δY

⟩
=

⟨
δP , X

⟩
+
⟨
P− δl

δX
, δX

⟩
−
⟨ δℓ

δY
, δY

⟩
,

⇒ δl

δX
= P ,

δh

δP
= X and

δh

δY
= − δℓ

δY
= Y.

Vanishing of the middle term in the second line defines the momentum P ∈ g∗. These derivatives
allow one to rewrite the Euler-Poincaré equation solely in terms of momentum P as

∂tP = ad∗
δh/δP P+ ∂s

δh

δY
− ad∗

Y

δh

δY
,

∂tY = ∂s
δh

δP
− adδh/δP Y . (2.11)

The corresponding evolution equation for any functional of f(P,Y) then follows as

∂

∂t
f(P,Y) =

⟨
∂tP ,

δf

δP

⟩
+
⟨
∂tY ,

δf

δY

⟩
=

⟨
ad∗

δh/δPP+ ∂s
δh

δY
− ad∗

Y

δh

δY
,
δf

δP

⟩
+
⟨
∂s

δh

δP
− adδh/δPY ,

δf

δY

⟩
= −

⟨
P ,

[
δf

δP
,
δh

δP

]⟩
+
⟨
∂s

δh

δY
,
δf

δP

⟩
−
⟨
∂s

δf

δY
,
δh

δP

⟩
+
⟨
Y , ad∗

δf/δP

δh

δY
− ad∗

δh/δP

δf

δY

⟩
=: {f , h}(P,Y) ,
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in which the bracket { · , · } satisfies the properties defining a Poisson bracket because it is dual to
the Lie bracket. Assembling these equations into Hamiltonian form gives,

∂

∂t

[
P
Y

]
=

[
ad∗

�P ∂s − ad∗
Y

∂s + adY 0

] [
δh/δP
δh/δY

]
(2.12)

in which the box � indicates how the ad- and ad∗- operations occur in the matrix multiplication.
In particular,

ad∗
�P (δh/δP) = ad∗

δh/δPP ,

so each matrix entry acts on its corresponding vector component.2

Higher dimensions (G-branes)

The notation in the Hamiltonian matrix (2.12) indicates how the jump to higher dimensions in
the variable s ∈ Rn may be made naturally. This is done by using the gradient ∂j = ∂/∂sj,
j = 1, 2, . . . , n to define the left invariant auxiliary variable Yj ≡ g−1∂jg in higher dimensions. The
lower left entry of the matrix (2.12) defines a covariant gradient, and its upper right entry defines
the adjoint operator, the covariant divergence. More explicitly, in terms of indices and partial
differential operators, this Hamiltonian matrix becomes,

∂

∂t

[
Pα

Yα
i

]
= Bαβ

[
δh/δPβ

δh/δYβ
j

]
, (2.13)

where the Hamiltonian structure matrix Bαβ is given explicitly as [17],

Bαβ =

[
−Pκ t

κ
αβ δ β

α ∂j + tβακY
κ
j

δαβ∂i − tαβκY
κ
i 0

]
. (2.14)

Here, the summation convention is enforced on repeated indices. Upper Greek indices refer to the
Lie algebraic basis set, lower Greek indices refer to the dual basis and Latin indices refer to the
spatial reference frame. The partial derivatives ∂i = ∂/∂si, i = 1, 2, . . . , n, act to the right on all
terms in a product by the chain rule.

(d) Write the Lie-Poisson Hamiltonian form for G = SO(3)

For the case that tαβκ are structure constants for the Lie algebra so(3), then tαβκ = ϵαβκ with
ϵ123 = +1 and the Lie bracket on so(3) may be identified with the vector product on R3. The
Lie-Poisson Hamiltonian matrix in (2.14) may then be rewritten in vector form as

∂

∂t

[
P
Yi

]
=

[
P× ∂j + Yj×

∂i + Yi× 0

] [
δh/δP
δh/δYj

]
. (2.15)

Returning to one dimension, one sees that stationary solutions for either ∂t → 0, or ∂s → 0 satisfy
equations of the same form as the heavy top. That the equations for either type of solution would

2The matrix in equation (2.12) is also the lower right corner of the Hamiltonian matrix for a perfect complex
fluid [17]. It also appears in the Lie-Poisson brackets for Yang-Mills fluids [12, 13] and for spin glasses [19]. See
those references for full discussions of the Lie algebraic meaning of such Lie-Poisson brackets for the perfect complex
fluid.
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have the same form might be expected, because of the exchange symmetry under t ↔ s and
X ↔ Y. Perhaps less expected is that these equations would appear in the form of a heavy top.
The EP formulation of the heavy top equations appears, for example, in [18].

For G = SO(3) and Lagrangian ℓ(X, Y) : R3 × R3 → R, in one spatial dimension the Euler-
Poincaré equation and its Hamiltonian form are given in terms of vector operations in R3, as
follows. First, the Euler-Poincaré equation (2.4) becomes

∂

∂t

δℓ

δX
= −X× δℓ

δX
− ∂

∂s

δℓ

δY
− Y × δℓ

δY
, (2.16)

and its auxiliary equation (2.1) becomes

∂

∂t
Y =

∂

∂s
X+ Y × X . (2.17)

The Hamiltonian structures of these equations on so(3)∗ are then obtained from the Legendre
transform relations

δℓ

δX
= P ,

δh

δP
= X and

δh

δY
= − δℓ

δY
.

Hence, the Euler-Poincaré equation (2.4) becomes

∂

∂t
P = P× δh

δP
+

∂

∂s

δh

δY
+ Y × δh

δY
, (2.18)

and the auxiliary equation (2.1) becomes

∂

∂t
Y =

∂

∂s

δh

δP
+ Y × δh

δP
, (2.19)

which recovers the Lie-Poisson Hamiltonian form in equation (2.15).

Finally, the equations for reconstructing O(t, s) ∈ SO(3) from the evolution of X(t, s) and

Y(t, s) may be expressed by using the hat map ̂ : R3 → so(3), e.g., X̂ij = − ϵijkX
k, as

∂tO(t, s) = O(t, s)X̂(t, s) and

∂sO(t, s) = O(t, s)Ŷ(t, s) . (2.20)

Remark 2.4. The Euler-Poincaré equations for the G-strand discussed here and their Lie-Poisson
Hamiltonian formulation provide a framework for systematically investigating three-dimensional
orientation dynamics along a fixed one-dimensional string. These partial differential equations are
interesting in their own right and they have many possible applications. For an idea of where the
applications of these equations could lead if the string were also allowed to bend self-consistently,
consult [28, 8].

The remainder of the paper will address the final item (e) in the Euler-Poincaré G-strand
procedure, by making two other choices for the group and the Lagrangian.
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3 The SO(3)K strand

Another interesting choice for the Lagrangian extends the orthogonal group SO(3) to the isotropy
group of a symmetric quadratic form in n dimensions.

Proposition 3.1 (Isotropy group). Let K ∈ GL(3,R) be a symmetric matrix, K = KT . The set

SO(3)K = {U ∈ GL(3,R)|UTKU = K} , (3.1)

defines the subgroup SO(3)K of GL(3,R). Moreover, this isotropy group of K is a submanifold of
Rn×n of dimension n(n− 1)/2.

Proposition 3.2. Let X̂ = U−1U̇ and Ŷ = U−1U ′ for U ∈ S, where U ′ and U̇ denote derivatives
of U in s and t, respectively. Then the matrix quantities X := KX̂ and Y := KŶ are antisymmetric

XT = −X and YT = −Y . (3.2)

Proof. This is a direct verification.

Let X̂′ and Ŷ˙ denote separate derivatives of X̂ and Ŷ. Then, by an easy calculation one finds,

X̂′ − Ŷ˙ = X̂ Ŷ − Ŷ X̂ =: [X̂, Ŷ].

Hence, upon substituting the definitions of X and Y, one finds

X′ = KX̂′ = KŶ˙ +K[X̂, Ŷ]

= Ẏ + XK−1Y − YK−1X

=: Ẏ + [X,Y]K

=: Ẏ + adK
X Y.

The corresponding auxiliary equation is to be compared with (2.1),

∂tY(t, s)− ∂sX(t, s) = −adK
X Y , (3.3)

in which Y evolves by the K-adjoint operation.

The same calculation of Hamilton’s principle δS = 0 as in the first section now yields the
following Euler-Poincaré equation, which is to be compared with (2.4),

∂

∂t

δℓ

δX
= adK∗

X

δℓ

δX
− ∂

∂s

δℓ

δY
+ adK∗

Y

δℓ

δY
, (3.4)

in which δℓ/δX evolves by the K-coadjoint operation, defined as⟨
adK∗

X

δℓ

δX
, Z
⟩
=
⟨ δℓ

δX
, adK

X Z
⟩
. (3.5)

Upon specializing to n = 3 and identifying the Lie bracket on so(3) with the vector product on
R3 as we did before, we find the corresponding K-vector equations for the motion on the isotropy
group S, by mapping

adK
X Y → K(X× Y) and adK∗

X P → −X×KP . (3.6)

This means the Lie-Poisson Hamiltonian matrix in (2.14) may be rewritten in K-vector form as

∂

∂t

[
P
Y

]
=

[
KP×2 ∂s + Y × (K2)

∂s +K(Y ×2) 0

] [
δh/δP
δh/δY

]
. (3.7)

In the next section, the K-vector equations obtained this way will be compared with the
completely integrable P -chiral model [3, 34].
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4 Relation to an integrable system: the P -chiral model

For the Lagrangian ℓ = 1
2
(|X|2 − |Y|2) in (2.9) the equations (3.3) - (3.6) in vector form are

∂tY(t, s)− ∂sX(t, s) +K(X× Y) = 0 , (4.1)

∂sY(t, s)− ∂tX(t, s) + Y ×KY − X×KX = 0 . (4.2)

These may be cast into Lie-Poisson Hamiltonian form, as follows.

4.1 Hamiltonian formulation of the P -chiral model in R3 × R3

The Legendre transformation (2.10) in this case yields P = X and

h(P,Y) =
1

2
|P|2 + 1

2
|Y|2 , (4.3)

which is sign-definite. Equation (3.7) now verifies the equations of motion in Lie-Poisson Hamil-
tonian form,

∂tP = KP× P+ ∂sY + Y × (KY) , (4.4)

∂tY = ∂sP+K(Y × P) . (4.5)

We introduce a new diagonal matrix P , according to

P =
1

2
tr(K)1−K , K = tr(P )1− P. (4.6)

With this definition one may easily check the identity

K(X× Y) = X× PY − Y × PX . (4.7)

By using this identity, equations (4.1) - (4.2) can be written as

∂tY(t, s)− ∂sX(t, s) + X× PY − Y × PX = 0 , (4.8)

∂sY(t, s)− ∂tX(t, s)− Y × PY + X× PX = 0 . (4.9)

4.2 Integrability of the P -Chiral model

Under the linear change of variables

u = X− Y and v = −X− Y (4.10)

equations (4.8) and (4.9) acquire the form of the following O(3) P -Chiral model, [3], [34], [11],

∂tu(t, s) + ∂su(t, s) + u× Pv = 0 , (4.11)
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∂tv(t, s)− ∂sv(t, s) + v × Pu = 0 , (4.12)

where the diagonal matrix P is defined in terms of the 3×3 symmetric matrix K in equation (4.6).

The system (4.11) - (4.12) represents two cross-coupled equations for u and v. These equations
preserve the magnitudes |u|2 and |v|2, so they allow the further assumption that the vector fields
(u, v) take values on the product of unit spheres S2 × S2 ⊂ R3 × R3. The P -Chiral model is an
integrable system and its Lax pair [22] in terms of (u, v) is given in [3]. Expressing its Lax pair in
terms of (X,Y) utilizes the following isomorphism between so(3)⊕ so(3) and so(4):

A(X,Y) =


0 X3 −X2 Y1

−X3 0 X1 Y2

X2 −X1 0 Y3

−Y1 −Y2 −Y3 0

 . (4.13)

The system (4.1) - (4.2) can be recovered as a compatibility condition of the operators

L = ∂s − A(Y,X)(λ Id + J), (4.14)

M = ∂t − A(X,Y)(λ Id + J), (4.15)

where the diagonal matrix J is defined by

J = −1

2
diag(−K1 +K2 +K3, K1 −K2 +K3, K1 +K2 −K3, K1 +K2 +K3). (4.16)

These steps get us to the O(3) P -chiral model and explain its derivation as an Euler-Poincaré
equation and thus as a Lie-Poisson system. Previous derivations had identified a linear Poisson
structure by other methods, mainly based on Lax pairs and Maurer-Cartan, or zero-curvature
relations. Now that we have taken these steps, we can build a chiral-type model as an Euler-
Poincaré equation with quadratic kinetic and potential energy on any Lie group.

Remark 4.1. If K = Id, equations (4.1) - (4.2) recover the O(3) chiral model.

5 The Sp(2) strand

5.1 Bloch-Iserles (BI) equation

The Bloch-Iserles equation is the n× n matrix differential system [2]

Ẋ(t) = [N,X2], (5.1)

where the skew-symmetric matrix N ∈ so(n) is given and the solution X(t) ∈ Sym(n) is a sym-
metric matrix. The BI equation is expressible equivalently as

Ẋ(t) = [B(X), X] , with B(X) = NX +XN , (5.2)

where B(X) : Sym(n) → so(n). Consequently, the solution of (5.2) for X(t) is given by the
similarity transformation

X(t) = Q(t)X(0)Q−1(t) , with Q̇Q−1(t) = B(X(t)) ∈ so(n) . (5.3)



DD Holm, RI Ivanov & JR Percival G-Strands 14

This form of the solution reveals that the BI equation is isospectral, i.e., the eigenvalues of the
symmetric matrix X(t) are preserved. Isospectrality leads to constants of motion, obtained from
the commutator form of the BI equation with B(X) = NX +XN ,

Ẋ(t) = [NX +XN + λN2, X + λN ] , with λ ∈ R . (5.4)

Consequently, the matrix invariants of X(t) are conserved,

tr(X + λN)k = const , for k = 1, 2, . . . , n− 1 . (5.5)

For more information about the further analysis of the n-component BI equation in general form,
see [2] and references therein. In what follows, we introduce the simplest case of the BI equation,
for the symplectic group Sp(2), then we treat its corresponding G-strand extension.

5.2 The simplest BI equation

The simplest nontrivial form of the BI equation may be derived as a particular Euler-Poincaré
equation on the symplectic group Sp(2). Euler-Poincaré equations on the symplectic group Sp(2n)
have been discussed earlier in [14, 10] and follow a familiar pattern.

Let the set of 2× 2 matrices Mi with i = 1, 2, 3 satisfy the defining relation for the symplectic
Lie group Sp(2),

MiJM
T
i = J with J =

(
0 −1
1 0

)
and no sum on index i = 1, 2, 3. (5.6)

The corresponding elements of its Lie algebra mi = ṀiM
−1
i ∈ sp(2) satisfy (Jmi)

T = Jmi for each
i = 1, 2, 3. Thus, Xi = Jmi satisfying XT

i = Xi comprises a set of three symmetric 2× 2 matrices.
For definiteness, we may choose a basis given by

X1 = Jm1 =

(
2 0
0 0

)
, X2 = Jm2 =

(
0 0
0 2

)
, X3 = Jm3 =

(
0 1
1 0

)
. (5.7)

This basis corresponds to the vector of momentum maps given by quadratic phase-space functions
X = (|q|2, |p|2,q · p)T that are often used in geometric optics and in the theory of particle beam
design. That is, for z = (q,p)T one identifies

1

2
zTX1z = |q|2 = X1,

1

2
zTX2z = |p|2 = X2,

1

2
zTX3z = q · p = X3 . (5.8)

Lemma 5.1. For X = Jm, Y = Jn ∈ sym(2) with m,n ∈ sp(2), the J-bracket

[X,Y]J := XJY − YJX =: 2sym(XJY) =: adJ
XY (5.9)

satisfies the Jacobi identity.

Proof. By a straightforward calculation using J2 = −Id2×2 with the definitions of X and Y, one
finds

[X,Y]J := XJY − YJX = −J(mn− nm) = −J [m,n] . (5.10)

The lemma then follows from the Jacobi identity for the symplectic Lie algebra and linearity in
the definitions of X,Y ∈ sym(2) in terms of m,n ∈ sp(2).



DD Holm, RI Ivanov & JR Percival G-Strands 15

5.3 The BI Sp(2) strand

Lemma 5.2. Let X = JMtM
−1 with time derivative Mt = ∂tM(t, s) and let Y = JM ′M−1 with

derivative M ′ = ∂sM(t, s). Then
X′ = Ẏ + [X,Y]J , (5.11)

for the J-bracket defined in equation (5.9).

Proof. Let m = MtM
−1 and n = M ′M−1. Then equality of cross derivatives implies the relation

m′ − ṅ = nm−mn =: −[m,n] .

Hence, upon substituting the definitions of the symmetric matrices X and Y, and using JT = −J ,
one finds

X′ = Jm′ = Jṅ− J [m,n]

= Ẏ + [X,Y]J = Ẏ + XJY − YJX

= Ẏ + 2sym(XJY) =: Ẏ + adJ
XY.

Equation (5.11) provides the dynamics of the quantity Y(s, t). Lemma 5.1 and Lemma 5.2 now
allow us to prove the following theorem for the derivation of the EP equation for Sp(2).

Theorem 5.3. Hamilton’s principle δS = 0 for S =
∫ b

a
ℓ(X,Y) ds dt implies the EP equation for

the symplectic Lie algebra sp(2),

∂

∂t

δℓ

δX
+ 2sym

(
JX

∂ℓ

∂X

)
+

∂

∂s

δℓ

δY
+ 2sym

(
JY

∂ℓ

∂Y

)
= 0 . (5.12)

Proof. By a direct calculation, integrating by parts, substituting and rearranging yields

δS =

∫ b

a

⟨ δℓ

δX
, δX

⟩
+
⟨ δℓ

δY
, δY

⟩
ds dt

=

∫ b

a

⟨ δℓ

δX
, ∂tZ+ adJ

XZ
⟩
+
⟨ δℓ

δY
, ∂sZ+ adJ

YZ
⟩
ds dt

=

∫ b

a

⟨
− ∂t

δℓ

δX
+ adJ∗

X

δℓ

δX
, Z
⟩
+
⟨
− ∂s

δℓ

δY
+ adJ∗

Y

δℓ

δY
, Z
⟩
ds dt

=

∫ b

a

⟨
− ∂

∂t

δℓ

δX
+ adJ∗

X

δℓ

δX
− ∂

∂s

δℓ

δY
+ adJ∗

Y

δℓ

δY
, Z
⟩
ds dt

= −
∫ b

a

⟨ ∂

∂t

δℓ

δX
+ 2sym

(
JX

∂ℓ

∂X

)
+

∂

∂s

δℓ

δY
+ 2sym

(
JY

∂ℓ

∂Y

)
, Z
⟩
ds dt .

Here the formulas for the variations δX and δY are obtained from the usual equality of cross
derivatives. One defines the J-coadjoint action (adJ∗) as the dual of the J-adjoint action (adJ)
with respect to the trace pairing ⟨ · , · ⟩ of symmetric matrices by⟨

adJ∗
X

δℓ

δX
, Z
⟩
=
⟨ δℓ

δX
, adJ

XZ
⟩
=
⟨ δℓ

δX
, 2sym(XJZ)

⟩
=
⟨
− 2sym

(
JX

∂ℓ

∂X

)
, Z
⟩
. (5.13)
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Remark 5.4. Consider the evolution equation (5.12) in the case that

ℓ(X,Y) =
1

2

∫
tr
(
X2
)
− tr

(
Y2
)
ds , (5.14)

where tr denotes trace of a matrix. (This is the motion equation for the Sp(2) chain with respect
to the trace pairing of symmetric matrices.)

For this Lagrangian, we have ∂ℓ/∂X = X and ∂ℓ/∂Y = −Y, so the Euler-Poincaré equation
(5.12) becomes

Ẋ+ 2sym
(
JX2

)
= Y′ + 2sym

(
JY2

)
, (5.15)

or, equivalently, in terms of the ordinary commutator

Ẋ+ [X,XJ + JX] = Y′ + [Y,YJ + JY] . (5.16)

Remark 5.5. When Y is absent, equation (5.16) for the BI strand recovers the BI ordinary
differential equation (5.2) for the case that N = J .

Remark 5.6. Either of the equivalent forms (5.15) or (5.16) of the EP(symp) motion equation
must be closed by using the evolution equation for Y, obtained in equation (5.11) from the compat-
ibility of cross derivatives. Namely,

Ẏ = X′ − 2sym (XJY) , (5.17)

or, equivalently,
Ẏ = X′ − (XJY − YJX) . (5.18)

Equations (5.16) and (5.18) may be compared against corresponding equations (4.2) and (4.1),
respectively. In this comparison, these systems seem to be dual to each other, as symmetric is dual
to antisymmetric.

5.3.1 Lie-Poisson Hamiltonian form of Sp(2) strand dynamics

The Hamiltonian form of the Euler-Poincaré equation (5.16) and compatibility equation (5.11)
with its associated Lie-Poisson bracket may be found as before from the Legendre transform

P =
∂ℓ

∂X
and X =

∂h

∂P
with h(P,Y) = tr(PX)− ℓ(X,Y) .

The Lie-Poisson bracket may also be obtained in the usual way as

∂

∂t

[
P
Y

]
=

[
adJ∗

2 P ∂s − adJ∗
Y

∂s + adJ
Y 0

] [
δh/δP
δh/δY

]
. (5.19)

This is the J-bracket version of the Lie-Poisson Hamiltonian structure in (2.12); so its Jacobi
identity will follow from that of the J-bracket discussed earlier.

Here, as in (5.20), one defines the J-coadjoint action (adJ∗) as the dual of the J-adjoint action
(adJ) with respect to the trace pairing ⟨ · , · ⟩ of symmetric matrices. Explicitly, this is⟨

adJ∗
∂h/∂PP , Z

⟩
=
⟨
P , adJ

∂h/∂PZ
⟩
=
⟨
P , 2sym

(∂h
∂P

JZ
)⟩

=
⟨
− 2sym

(
J
∂h

∂P
P
)
, Z
⟩
. (5.20)



DD Holm, RI Ivanov & JR Percival G-Strands 17

Remark 5.7. Legendre transforming the Lagrangian (5.14) that is a difference of squares leads to
a Hamiltonian that is a sum of squares

h(P,Y) =
1

2

∫
tr(P2) + tr(Y2) ds , (5.21)

where, as before, tr denotes the trace of a matrix.

5.3.2 The isomorphism between Sp(2) and SL(2) strand equations

The Lie algebras sp(2) and sl(2) are isomorphic. The G-strand equations in terms of the variables
n ∈ sl(2) and m ∈ sl(2) are

ṁ− n′ − [mT ,m] + [nT , n] = 0, (EP equation) (5.22)

ṅ−m′ + [n,m] = 0 (compatibility), (5.23)

in which Jm and Jn are symmetric. The first of these is the sl(2) EP equation with Lagrangian

L =
1

2

∫
tr(nTn+mTm)ds . (5.24)

Equations (5.22) and (5.23) are related to the previously considered K-chiral model (that is, before
specifying how K relates to P ) with

K =

 0 1 0
1 0 0
0 0 1

 , (5.25)

where however this K is not diagonal. The relation is based on the following linear invertible map
between vectors X ∈ R3 and sl(2) matrices:

A(X) =

(
X3

2
X1√
2

X2√
2

−X3

2

)
∈ sl(2). (5.26)

Consequently, one finds

[A(X),A(Y)] = A(K · X × Y)

A(K · X) = AT (X)

and

[A(X),A(Y)] = AT (X × Y)

A(X × Y) = ([A(X),A(Y)])T .

Thus, the constraint equation for the K-model (4.1) in the sl(2) representation becomes

Ȧ(Y)− A′(X) = −A(K · X × Y) = −[A(X),A(Y)]. (5.27)
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Likewise, the EP equation for the K-model (4.2) becomes

A′(Y)− Ȧ(X) = −A(Y × K · Y) + A(X× K · X)
= −[A(Y),A(KY)]T + [A(X),A(KX)]T

= −[A(Y),AT (Y)]T + [A(X),AT (X)]T

= −[A(Y),AT (Y)] + [A(X),AT (X)] . (5.28)

Now upon identifying m = A(X) and n = A(Y) one finds that the sl(2) model equations
(5.22)–(5.23) above are also integrable, because they are isomorphic to (4.1) - (4.2).

Furthermore, one can make use of the following property for the action of K given in (5.25):
the vector K · X ∈ R3 corresponds to the matrix −KXK ∈ so(3), where as usual X is the so(3)
representation of the vector X. The equations of the sp(2) model according to the above sl(2)
identification can be written in vector form (4.1) - (4.2). In the so(3) representation, this becomes

Ẋ+ [KXK,X] = Y′ + [KYK,Y] and Ẏ = X′ − K[Y,X]K . (5.29)

The symmetric matrix K may be written as K = OK̃OT, with diagonal matrix K̃ = diag(−1, 1, 1)
and orthogonal matrix O given by

O =

 − 1√
2

1√
2

0
1√
2

1√
2

0

0 0 1

 , note O = OT = O−1. (5.30)

In terms of the new variables X̃ = OTXO, Ỹ = OTYO, equations (5.29) keep their form

˙̃X+ [K̃X̃K, X̃] = Ỹ′ + [K̃ỸK̃, Ỹ] and ˙̃Y = X̃′ − K̃[Ỹ, X̃]K̃ . (5.31)

However, now the matrix K̃ is diagonal and this case is integrable, since it reduces to the P-
chiral model. Thus, with the ‘gauge’ transformation that diagonalizes K and a series of canonical
isomorphisms, the sp(2) EP equations with Lagrangian (5.31) have also been brought into the
form of the integrable so(3) P-chiral model.

6 Numerical solutions for O(3) and Sp(2) P -Chiral models

The equations for the O(3) P -Chiral model (4.11–4.12) can be rewritten in the form

∂tu(t, ξ) + u(t, ξ)× Pv(t, ξ) = 0 , (6.1)

∂tv(t, η) + v(t, η)× Pu(t, η) = 0 , (6.2)

for new wave-tracking variables
ξ = s− t , η = s+ t .

This formalism shows explicity the nature of the cross-coupling between the natural physical
variables, u and v. At fixed ξ (i.e. along a characteristic of fixed slope, c = 1), u may vary only
when it interacts with nonvanishing v. Similarly, at fixed η (a characteristic of fixed slope c = −1),



DD Holm, RI Ivanov & JR Percival G-Strands 19

v varies only with nonvanishing u. Note also, as previously stated, the quantities |u|(ξ) and |v|(η)
are fixed along their respective characteristics. This in turn implies constraints on the evolution
of the original geometric varibles X = (u− v)/2 and −(v + u)/2.

In the static s frame, compactly supported solutions of the G-strand models consist of trains
of generally fixed travelling profiles in u and v along the line at speed c = ±1 and undergoing
rotation when they collide, or equivalently matched symmetric and antisymmetic pairs in X,Y
undergoing the same behaviour.

The model (6.1–6.2) is particularly tractable for numerical simulation since the absence of
explicit spatial derivatives removes the numerical dispersion typical in time integration of advective
operators such as appear in (4.11–4.12). The forcings due to of the nonlinear interaction terms can
be modelled through standard time discretization techniques. Here we choose to use the implicit
midpoint rule using cubic spline interpolation over a pointwise discretization of ξ and η.

Figure 1 shows waterfall plot comparisons of the three components of the numerical solution
solution u and of v for the standard Chiral equations, with matrix

K = I,

and hence, from (4.6)
P = I.

The equations are integrated on a periodic domain in s with initial conditions

u(0, s) = (0, A(s− 0, 25), 0), for s ∈ [−0.25, 0.75]

v(0, s) = (A(s− 0.75), 0, 0), for s ∈ [0.25, 1.25] (6.3)

for a Gaussian profile A(s) = exp(−256s2)

This choice of profile for the experiment is effectively arbitrary and in fact any suitably smooth
profile could be substituted. The observed solution behaviour is as expected, with rightward, c = 1,
travelling waves in u and leftward, c = −1, waves in v. At points of collision the nonlinear terms
cause the waves counterrotate around each other, primarily into the third component due to the
value of u× v at t = 0.

Following the methodology and isomorphisms of the previous section we may also apply the
same numerical model and analysis for the BI strand equations (5.16) by specifying matrices

K =

 −1 0 0
0 1 0
0 0 1

 , P =
1

2

 3 0 0
0 −1 0
0 0 −1

 ,

and setting the vectors u, v to map to and from symmetric matrices X, Y through

u = (u1, u2, u3) =
1

2

(
u1 + u2 u3

u3 u1 − u2

)
= X − Y

v = (v1, v2, v3) =
1

2

(
v1 + v2 v3

v3 v1 − v2

)
= −X − Y

Figure 2 shows the results of an integration in the BI mode of the vector initial conditions (6.3).
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Discussion. The numerical results exhibit fundamentally the same behaviour, except that the
isotropy breaking in P introduces preferred axes to the rotation so that transfers between the
second and third components of u and v are faster than motions involving the first component.
Hence, in this case, we observe a rapid growth in u3 in comparison to v3 over the course each
collision. It is in part this directionality in the rotations which allows the Bloch-Iserles ordinary
differential equations (ODE) to act a sorting process.

Given the sorting nature of the Bloch-Iserles ODE (when Y = 0 and X is independent of s),
it is natural to question whether this behaviour is observed on the spatially dependent strand.
To address this question, we now consider the evolution of the initial conditions for two forms of
twisted helical strand, namely

X1 =
1

2

(
sin(2πs) + cos(2πs) 0

0 sin(2πs)− cos(2πs)

)
, Y1 =

1

2

(
0 0
0 0

)
,

X2 =

(
sin(2πs) cos(2πs)
cos(2πs) − sin(2πs)

)
, Y2 =

1

2

(
0 0
0 0

)
,

i.e. under the mapping to vector space,

X1 = (sin(2πs), cos(2πs), 0), Y1 = 0,

X2 = (0, sin(2πs), cos(2πs)), Y2 = 0,

or, in the P-Chiral physical variables,

u1 = (sin(2πs), cos(2πs), 0), v1 = (− sin(2πs),− cos(2πs), 0).

u2 = (0, sin(2πs), cos(2πs)), v2 = (0,− sin(2πs),− cos(2πs)).

These are two of the simplest (in the spectral sense) states which can exhibits spatial dependence.
In u–v space the solutions would consist, in the absence of the other component of counter-rotation
helices. Figures 4 and 5 show the variation of locus of the eigenvectors of the various matrices
with time. In both cases it will be noted that the oscillatory behaviour caused by the wave motion
dominates, in this sense motions on the strand retard the sorting action of the BI operator as the
algorithm can only operate when characteristics in u and v originating from the same point in S1

coincide.
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Figure 1: Array of waterfall plots showing the t and s dependence and componentwise comparison of
P-Chiral variables u and v for the numerical solution of the initial value problem (6.3) in a periodic
domain of unit length. Here the components of u are plotted in solid black in rows down the page and
the components of v in dashed blue in columns across the page. Snapshots of profiles in s are shown
at various times t with the vertical offset proportional to t. In the absence of the signal in the other
variable each profile would translate forever at unit wavespeed, rightwards for u, leftwards for v. This
motion would be independent of the actual profile chosen. At points of interaction the variables are
rotated antisymmetrically, introducing a clear signal in the cross-component direction, u3, v3 as well
as a much less obvious response in u1 and v2. The magnitudes |u| and |v| are conserved in frames
travelling with the wave, even through the collision.
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Figure 2: Array of waterfall plots showing the t and s dependence and componentwise comparison of
Bloch-Iserles variables u and v for the numerical solution of the initial value problem (6.3) in a periodic
domain of unit length. Here the components of u are plotted in solid black in rows down the page
and the components of v in dashed blue in columns across the page. Snapshots of profiles in s are
shown at various times t with the vertical offset proportional to t. In the absence of the signal in the
other variable each profile would translate forever at unit wave speed, rightwards for u, leftwards for v.
Compared with the previous figure, the much larger signal in u3 post collision is obvious. This is due
to the anisotropic nature of the Bloch-Iserles strand operator. The magnitudes |u| and |v| are again
conserved in each travelling frame.
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Figure 3: Isometric plots of the helical initial conditions used in the Bloch-Iserles strand problem shown
in terms of the u1,v1 variables. In the first panel one period of the spatial domain, s is mapped to
the vertical axis, with the R3 vectors u1(s) and v1(s) plotted at 25 locations (dotted blue and green
lines respectively), linking the point s with points s + u1(s) and s + v1(s). The locus of these points
is indicated in the solid lines. The projections of these loci onto the s-y, s-z, and y-z planes are also
indicated in dashed black for u and dotted black for v. The initial condition for u2, v2 has fundamentally
the same form, oriented albeit rotated to twist around the s-axis. Animations of the evolution of these
visualizations are available as supplementary materials for numerical experiments presented in this paper.
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(a) (b)

Figure 4: Isometric plots of surfaces generated by the eigenvalues of the symmetric matrices X(s, t)
(Panel a) and Y (s, t) (Panel b) under the strand Bloch-Iserles equations for helical initial conditions,

u = (sin(2πs), cos(2πs), 0), v = (sin(2πs), cos(2πs), 0), s ∈ [0, 1],

on a periodic domain. Time dependence is plotted along the vertical axis, with eigenvectors
λ1,λ2 on the horizontal axes. Linear oscillatory motions dominate, with the locus of eigenvectors lying
close to a circle, whose radius varies sinusoidally with time in both variables, with a clear half period
phase difference. Animations of the time evolution of these solutions are available as supplementary
materials for all numerical experiments presented in this paper.

(a) (b)

Figure 5: Isometric plots of surfaces generated by the eigenvalues of the symmetric matrices X(s, t)
(Panel a) and Y (s, t) (Panel b) under the Bloch-Iserles strand equation for helical initial conditions.
Time is shown vertically In all cases the linear oscillatory motion of period one dominates. Animations
of the evolution of these solutions are available as supplementary materials for all numerical experiments
presented in this paper.
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7 The G-strand PDE for G = Diff(R)

A particularly interesting G-strand system arises when we choose G = Diff(R) and the Lagrangian
involves the H1 Sobolev norm. This case is reminiscent of fluid dynamics and may be written
naturally in terms of right-invariant tangent vectors (t, s, x) and γ(t, s, x) defined by

∂tg = ν ◦ g and ∂sg = γ ◦ g , (7.1)

where the symbol ◦ denotes composition of functions. In this right-invariant case, the G-strand
PDE system in equations (2.1) and (2.4) for G = Diff(R) with reduced Lagrangian ℓ(ν, γ) takes
the following form, which generalizes to G = Diff(Rd) in any number of spatial dimensions,

∂

∂t

δℓ

δν
+

∂

∂s

δℓ

δγ
= − ad∗

ν

δℓ

δν
− ad∗

γ

δℓ

δγ
,

∂γ

∂t
− ∂ν

∂s
= adνγ .

(7.2)

These equations form a subset of the equations studied in [9, 17, 19, 30] for complex fluids. They
also form a subset of the equations for molecular strands studied in [8]. The latter comparison
further justifies the name G-strands for the systems being studied here. These equations may
be derived from Hamilton’s principle for an affine Lie group action, under which the auxiliary
equation for γ may be interpreted as an advection law. This interpretation is discussed further in
[8, 9].

Upon setting m = δℓ/δν and n = δℓ/δγ, the right-invariant G-strand equations in (7.2) for
maps R × R → G = Diff(R) in one spatial dimension may be expressed as a system of two 1+2
PDEs in (t, s, x),

mt + ns = − ad∗
νm− ad∗

γn = −(νm)x −mνx − (γn)x − nγx ,

γt − νs = − adγν = −νγx + γνx .
(7.3)

The corresponding Hamiltonian structure for these Diff(R)-strand equations is obtained by Leg-
endre transforming to

h(m, γ) = ⟨m, ν⟩ − ℓ(ν, γ) .

One may then write the m-γ equations (7.3) in Lie-Poisson Hamiltonian form as

d

dt

[
m
γ

]
=

[
− ad∗

2m ∂s + ad∗
γ

∂s − adγ 0

] [
δh/δm = ν
δh/δγ = −n

]
. (7.4)

This is the Lie-Poisson bracket dual to the action of the semidirect-product Lie algebra

g = X(R)sΛ1(Dens)(R)⊕ C(∂s)

in which X(R) is the space of vector fields and Λ1(Dens)(R) is the space of 1-form densities on
the real line R, plus a generalized 2-cocycle C(∂s). In the γ − ν entry of the Hamiltonian matrix
in (7.4), one recognizes the vector-field covariant derivative in s, and finds its negative adjoint
operator in the ν − γ entry. For more details about how such Lie-Poisson Hamiltonian structures
arise in complex fluids with finite-dimensional order-parameter groups (broken symmetries) and
full discussions of their Lie algebraic properties, see [9, 17, 19, 30] and references therein. The
differences in sign between the Hamiltonian matrix in (7.4) and those in (2.12) and (5.19) are due
to the differences between right-invariance here and left-invariance in the other two cases.
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7.1 Semi-stationary solutions

Remark 7.1. For s-independent solutions, the Diff(R) equations (7.3) reduce to EP equations
for a Lagrangian defined on T (Diff(R) × X(R))/DiffX0(R)), in which DiffX0(R) ⊂ Diff(R) is the
isotropy subgroup of the vector field parameter X0(R). Namely, for solutions that are functions of
t and x,

mt = − ad∗
νm+ ad∗

γ(−n) = −(νm)x −mνx − (γn)x − nγx ,

γt = − adγν = −νγx + γνx .
(7.5)

The EP equations for the reduced Lagrangian ℓ(ν, γ) represent ideal fluid dynamics with an advected
vector field, γ. It’s Lie-Poisson form is given by the Hamiltonian matrix in (7.4), without the
generalized 2-cocycle C(∂s).

The semi-stationary equations (7.5) may be interpreted as a one-dimensional analogue of ideal
incompressible magnetohydrodynamics (iiMHD) in three dimensions [1, 21]. To compare the semi-
stationary versions of (7.3) with the iiMHD EP equations, we recall the latter in three dimensions
for fluid velocity u ∈ Λ1(R3) and magnetic field B ∈ X(R3), which may be rewritten in the present
geometric notation as

ut = − ad∗
uu+ ad∗

BB ,

Bt = −adBu ,
(7.6)

with div u = 0 and divB = 0. One sees the similarity with (7.5) immediately. These iiMHD
equations arise as EP equations from Hamilton’s principle with Lagrangian [21]

ℓ(u,B) =
1

2

∫ (
u2 −B2

)
d3x =

1

2
∥u∥2L2 −

1

2
∥B∥2L2 . (7.7)

Equations (7.6) may be written in Lie-Poisson Hamiltonian form (7.4) as

d

dt

[
u
B

]
=

[
− ad∗

2u ad∗
B

− adB 0

] [
δh/δu = u
δh/δB = B

]
, (7.8)

with MHD Hamiltonian h(u,B) given by the sum of the kinetic and magnetic energies,

h(u,B) =
1

2

∫ (
u2 +B2

)
d3x . (7.9)

For further discussion of the EP theory underlying the equations for ideal fluid dynamics with
advected quantities, see [21].

7.2 Relation to the Camassa-Holm equation

An interesting subcase of the system of semi-stationary Diff(R)-strand equations (7.5) arises when
one selects the Lagrangian expressed only in terms of ν as its H1 norm on the real line,

ℓ(ν, γ) =
1

2
∥ν∥2H1 , (7.10)
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with vanishing boundary conditions, as |x| → ∞. In this case, m = ν−νxx, so the semi-stationary
G-strand equations in (7.5) provide an extension of the completely integrable Camassa-Holm (CH)
equation [4],

mt = − ad∗
νm = −(νm)x −mνx with m =

δℓ

δν
= ν − νxx . (7.11)

Specifically, these modified G-strand equations reduce in the absence of γ-dependence to the CH
equation, which admits singular solutions known as peakons [4]

m(t, x) =
∑
a

Ma(t)δ(x−Qa(t)) , (7.12)

where we sum in a ∈ Z over the integers, or over any subset of the integers. The peakon solution
(7.12) of the CH equation may be understood as a singular momentum map, as discussed in [20].

7.3 Peakon solutions of the Diff(R)-strand equations

With the choice of Lagrangian using the H1 norm,

ℓ(ν, γ) =
1

2
∥ν∥2H1 −

1

2
∥γ∥2H1 , (7.13)

the Diff(R)-strand equations (7.3) admit peakon solutions in both momenta m and n, with con-
tinuous velocities ν and γ. We state this result in the following theorem.

Theorem 7.2. The Diff(R)-strand equations (7.3) admit singular solutions

m(s, t, x) =
∑
a

Ma(s, t)δ(x−Qa(s, t)) , n(s, t, x) =
∑
a

Na(s, t)δ(x−Qa(s, t)) , (7.14)

ν(s, t, x) = K ∗m =
∑
a

Ma(s, t)K(x,Qa) , γ(s, t, x) = K ∗ n =
∑
a

Na(s, t)K(x,Qa) ,

that are peakons for K(x, y) = 1
2
e−|x−y|. These singular solutions follow from Hamilton’s principle

δS = 0 for the constrained action S =
∫
L(ν, γ,Q) dt given by

S =

∫
ℓ(ν, γ) +

∑
a

Ma(s, t)
(
∂tQ

a(s, t)− ν(Qa, s, t)
)
+
∑
a

Na(s, t)
(
∂sQ

a(s, t)− γ(Qa, s, t)
)
ds dt .

and they are peakons for the Lagrangian ℓ(ν, γ) given in equation (7.13).

Proof. After replacing

ν(Qa, s, t) =

∫
ν(x, s, t)δ(x−Qa(t, s)) dx and γ(Qa, s, t) =

∫
γ(x, s, t)δ(x−Qa(t, s)) dx ,

one computes δS in Hamilton’s principle δS = 0 for the Lagrangian ℓ(ν, γ) as,

δS =

∫ ⟨
δℓ

δν
−
∑
a

Ma(t, s)δ(x−Qa(t, s)), δν

⟩
+

⟨
δℓ

δγ
−
∑
a

Na(t, s)δ(x−Qa(t, s)) , δγ

⟩
ds dt

+

∫ ∑
a

δMa(s, t) (∂tQ
a(s, t)− ν(Qa, s, t)) +

∑
a

δNa(s, t) (∂sQ
a(s, t)− γ(Qa, s, t)) ds dt

−
∫ ∑

a

(
∂tMa + ∂sNa +

∑
b

(
∂ν(Qb)

∂Qa
Mb +

∂γ(Qb)

∂Qa
Nb

))
δQa ds dt .
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Hence, stationarity of the constrained action S in the statement of the theorem implies

δν :
δℓ

δν
=
∑
a

Ma(t, s)δ(x−Qa(t, s)) ,

δγ :
δℓ

δγ
=
∑
a

Na(t, s)δ(x−Qa(t, s)) ,

δMa : ∂tQ
a(s, t) = ν(Qa, s, t) ,

δNa : ∂sQ
a(s, t) = γ(Qa, s, t) ,

δQa : ∂tMa + ∂sNa +
∑
b

(
∂ν(Qb)

∂Qa
Mb +

∂γ(Qb)

∂Qa
Nb

)
= 0 .

(7.15)

The first two equations recover the forms of the singular solutions from equation (7.14) in the
statement of the theorem. These expressions are singular momentum maps, as discussed in detail
in [20]. The corresponding velocities are expressed as

ν(x, s, t) = K ∗m =
∑
b

Mb(s, t)K(x,Qb) , γ(x, s, t) = K ∗ n =
∑
b

Nb(s, t)K(x,Qb) , (7.16)

for a symmetric, positive-definite kernel K(x, y).

Inserting the forms of the solutions for the tangent vectors, or velocities ν and γ in (7.16) into
the compatibility condition in (7.3) yields∑

b

K(x,Qb)

[
−∂tNb(s, t) + ∂sMb +

∑
c

(NbMc −MbNc)
∂K(x,Qc)

∂x

]

+
∑
b,c

Kbc∂K(x,Qb)

∂x
(NbMc −MbNc) = 0 .

(7.17)

Evaluating this formula at x = Qa(s, t) then yields a relation among the solution parameters as∑
b

[
Kab(∂sMb − ∂tNb) +

∑
c

(NbMc −MbNc)
∂Kac

∂Qa
(Kab −Kcb)

]
= 0 , (7.18)

where we have introduced the matrix notation Kab := K(Qa, Qb). The symmetric matrix Kab =
Kba follows from the choice of kernel and is assumed to be invertible. Invertibility of Kab in the
compatibility equation (7.18) implies a relation

∂sMe − ∂tNe +
∑
a,b,c

(NbMc −MbNc)
∂Kac

∂Qa
(Kab −Kcb)(K−1)ea = 0 , (7.19)

which may also be regarded as an evolution equation for the Lagrange multiplier Ne(s, t).

Equation (7.18), or equivalently equation (7.19) also arises from applying equality of cross
derivatives ∂2

stQ = ∂2
tsQ to the two constraint equations in (7.15) imposed by the Lagrange multi-

pliers Ma and Na. This may be seen by substituting the two constraint relations into the equations
for the cross derivatives,

∂2
tsQ

a = ∂sν(Q
a, s, t) +

∑
c

∂ν(Qa)

∂Qc
γ(Qc) = ∂tγ(Q

a, s, t) +
∑
c

∂γ(Qa)

∂Qc
ν(Qc) = ∂2

stQ , (7.20)
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whereupon rearranging then yields equation (7.18) and invertibility of Kab implies (7.19).

Finally, the δQa equation in the set (7.15) is given by,

∂tMa +Ma

∑
b

Mb
∂Kab

∂Qa
+ ∂sNa +Na

∑
b

Nb
∂Kab

∂Qa
= 0 , (7.21)

which is an evolution equation for the Lagrange multiplier Ma(s, t).

For the Lagrangian in (7.13) we have ν = K ∗ m and γ = K ∗ n for the symmetric positive
definite kernel K(x, y) = 1

2
e−|x−y|, which means that in this case matrix elements of Kab take the

peakon shape Kab = 1
2
e−|Qa−Qb|. The corresponding singular solutions (7.14) are peakons for the

Lagrangian in (7.13).

Summary. Upon collecting equations, we have the following three results.

1. The singular solutions of the G-strand equations for G = Diff(R) are represented by two
singular momentum maps,

m(s, t, x) =
∑
a

Ma(s, t)δ(x−Qa(s, t)) , T ∗
t Emb(S,R) → X∗

t (R) ,

n(s, t, x) =
∑
a

Na(s, t)δ(x−Qa(s, t)) , T ∗
s Emb(S,R) → X∗

s(R) ,
(7.22)

where S ∈ R is the support set of the delta functions, and Emb(S,R) denotes the set of
smooth embeddings Q : S → R.

2. The two tangent vectors, or velocities, that correspond to these momentum maps are,

ν(t, s, x) = K ∗m =
∑
a

Ma(s, t)K(x,Qa(s, t)) ,

γ(t, s, x) = K ∗ n =
∑
a

Na(s, t)K(x,Qa(s, t)) .
(7.23)

These arise from the convolution K∗ : X∗(R) → X(R) of m and n with the kernel K.

3. The solution parameters {Qa(s, t),Ma(s, t), Na(s, t)} with a ∈ Z that specify the singular
solutions (7.14) are determined by the following set of evolutionary PDEs in s and t, in
which we denote Kab := K(Qa, Qb):

∂tQ
a(s, t) = ν(Qa, s, t) =

∑
b

Mb(s, t)K
ab ,

∂sQ
a(s, t) = γ(Qa, s, t) =

∑
b

Nb(s, t)K
ab ,

∂tMa(s, t) = − ∂sNa −
∑
c

(MaMc +NaNc)
∂Kac

∂Qa
(no sum on a),

∂tNe(s, t) = ∂sMe +
∑
a,b,c

(NbMc −MbNc)
∂Kac

∂Qa
(Kab −Kcb)(K−1)ea (do sum on a).

(7.24)
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The last pair of equations in (7.24) may be solved as a system for the momenta, or Lagrange
multipliers (Ma, Ne), then used in the previous pair to update the support set of positions Qa(t, s).
Given Qa(t, s) for a ∈ Z, one constructs (m,n(t, s, x)) along the solution paths x = Qa(t, s) from
equations (7.22) and then obtains (ν, γ(t, s, x)) for x ∈ R from equations (7.23). Alternatively,
knowing the position Qa(s, t), a = 1, . . . , n, for all s at a given time t, also determines Na upon
inverting the matrix Kab in the second equation in (7.24).

7.4 Canonical Hamiltonian form of the Diff(R)-strand peakon dynamics

The Diff(R)-strand peakon equations (7.24) may be written in a canonical Hamiltonian form, after
making a Legendre transformation to a Routhian, or constrained Hamiltonian, by forming

H(M,Q) =

∫ [∑
a

Ma∂tQ
a
]
ds− L(ν, γ,Q)

=

∫ [ ∫ ∑
a

Maν(x)δ(x−Qa)dx− ℓ(ν, γ)−
∑
a

Na(∂sQ
a − γ(Qa))

]
ds ,

(7.25)

where L(ν, γ,Q) denotes the constrained Lagrangian appearing in Theorem 7.2,

L(ν, γ,Q) :=

∫ [
ℓ(ν, γ) +

∑
a

⟨Ma(s, t), ∂tQ
a(s, t)− ν(Qa, s, t)⟩

+
∑
a

⟨Na(s, t), ∂sQ
a(s, t)− γ(Qa, s, t)⟩

]
ds .

(7.26)

The variations of the resulting Routhian H are given by

δH(M,Q) =

∫ [⟨∑
a

Maδ(x−Qa)− δℓ

δν
, δν

⟩
+

⟨∑
a

Naδ(x−Qa)− δℓ

δγ
, δγ

⟩
−
∑
a

(
∂sQ

a − γ(Qa)
)
δNa

+
∑
a

ν(Qa)δMa +
∑
a,b

(
Mb

∂ν(Qb)

∂Qa
+ ∂sNa +Nb

∂γ(Qb)

∂Qa

)
δQa

]
ds ,

(7.27)

where the angle brackets ⟨ · , · ⟩ denote L2 pairing in x ∈ R. Vanishing of the first two terms recovers
the two singular moment maps in (7.22). Vanishing of the third term imposes the second constraint
in (7.24). Finally, the remaining two terms produce the corresponding canonical equations for the
Routhian H with canonically conjugate variables Qa(s, t) and Ma(s, t),

∂tQ
a =

δH

δMa

= ν(Qa) ,

∂tMa = − δH

δQa
= − ∂sNa −

∑
b

(
Mb

∂ν(Qb)

∂Qa
+Nb

∂γ(Qb)

∂Qa

)
.

(7.28)

Compatibility of the constraint ∂sQ
a = γ(Qa) and the canonical equation ∂tQ

a = ν(Qa) then
recovers the last equation in (7.24) for the evolution of the Lagrange multiplier Na. This completes
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the canonical Hamiltonian formulation of the singular solutions of the Diff(R)-strand equations in
(7.24). The conserved energy of the peakons for the Lagrangian in (7.13) is

E =
1

2

∫ ∑
a

Maν(Q
a) +Naγ(Q

a) ds =
1

2

∫ ∑
a,b

MaK
abMb +NaK

abNb ds . (7.29)

7.5 Alternative forms of the Diff(R)-strand equations

Velocities, Eulerian. The Diff(R)-strand equations (7.3) may be written equivalently in terms
of the velocities ν and γ, in Eulerian form as

∂tν + ννx + ∂sγ + γγx = − ∂xP (ν, γ) ,

∂tγ + γνx = ∂sν + νγx ,

where P (ν, γ) := K∗
(
ν2 +

1

2
ν2
x + γ2 +

1

2
γ2
x

)
.

(7.30)

Velocities, Lagrangian. Equations (7.30) themselves may be rewritten equivalently by using
Lagrangian time derivatives in s and t, in the compact form,

dν

dt

∣∣∣∣
ν

+
dγ

ds

∣∣∣∣
γ

= − ∂xP (ν, γ) ,

dγ

dt

∣∣∣∣
ν

− dν

ds

∣∣∣∣
γ

= 0 .

(7.31)

Momenta, Lagrangian. Going back to the momentum 1-form densities mdx2 and n dx2 allows
us to rewrite equations (7.3) once more equally compactly using Lagrangian time derivatives as

d

dt

∣∣∣∣
dx/dt=ν

(mdx2) +
d

ds

∣∣∣∣
dx/ds=γ

(n dx2) = 0 ,

d

dt

∣∣∣∣
dx/dt=ν

γ − d

ds

∣∣∣∣
dx/ds=γ

ν = 0 .

(7.32)

Outlook: Studies of the solution behavior and the issue of integrability of the G-strand equations
(7.3) for G = Diff(R) with the Lagrangian (7.13) may be expected in future investigations along
the present lines. For example, the velocity form of the Diff(R)-strand equations in (7.30) may
be useful in determining whether they produce wave breaking from smooth initial conditions, by
studying their slope dynamics at a moving inflection point of both velocities to prove a steepening
lemma.

Higher spatial dimensions. The G-strand equations may also be written in higher spatial
dimensions. For example, the G-strand equations for volume-preserving diffeomorphisms in three
dimensions with G = SDiff(R3) may be written in terms of divergence-free vector fields as

∂tω + [ν,ω] + ∂sΩ+ [γ,Ω] = 0 , with ω = curlν and Ω = curlγ ,

∂tν − ∂sγ − [ν, γ] = 0 , where div ν = 0 and div γ = 0 .
(7.33)

It may be interesting to study the point-vortex dynamics of these equations in two dimensions.
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8 Conclusions

This paper has provided a general framework for studying the G-strand equations, the PDE system
comprising the Euler-Poincaré (EP) variational equations (2.4) for a G-invariant Lagrangian, cou-
pled to the auxiliary zero-curvature equation (2.1). The latter has often been the departure point
and main focus in other approaches, because it sets up the Lax-pair formulation of the system.

Once the G-invariant Lagrangian has been specified, the EP and zero-curvature system of G-
strand equations (2.4) and (2.1) follow automatically. In the present paper, the well-known SO(3)
chiral model PDE system has been extended by placing it into the G-strand framework and then
deriving its Lie-Poisson Hamiltonian formulation on the dual Lie algebra so(3)∗. The corresponding
Lie-Poisson bracket given in equation (2.12) turns out to be the same as for a perfect complex fluid
[17]. It also appears in the Lie-Poisson brackets for Yang-Mills fluids [12, 13] and for spin glasses
[19]. The SO(3) chiral model itself emerges in the G-strand framework for the very simple choice
of quadratic Hamiltonian given in equation (4.3).

In this framework, two new integrable 1+1 EP PDE systems have been identified in Section 3
and Section 5 that may be transformed into the SO(3) P-chiral model. These are the SO(3)K and
Sp(2) G-strand equations in which the corresponding Hamiltonians are sums of squares. Other
types of integrable P-chiral models are also available. The various Lie algebras for these may be
classified according to the signature sgn(K) of the real symmetric matrix K, defined as the triple
(l,m, n) of the numbers of its positive, null, and negative eigenvalues, respectively.

Finally, the dynamics of the soliton solutions for these two integrable systems has been studied
numerically and their coherent nonlinear scattering behavior has been explored for some simple
initial conditions in Section 6.

Other systems may be treated using the same approach. For example, one may formulate the
G-strand equations for the two-dimensional Toda lattice, in terms of an appropriate Lie-algebra
of lower-triangular matrices, as reviewed in [15]. The multicomponent Bloch-Iserles system may
also be formulated in this way. These other systems are likely to be fruitful subjects of future
investigations of the G-strand PDE, including the G-strands on the diffeomorphisms, introduced
in Section 7.
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