288 research outputs found
Altered TMPRSS2 usage by SARS-CoV-2 Omicron impacts infectivity and fusogenicity
The SARS-CoV-2 Omicron BA.1 variant emerged in 2021(1) and has multiple mutations in its spike protein(2). Here we show that the spike protein of Omicron has a higher affinity for ACE2 compared with Delta, and a marked change in its antigenicity increases Omicron's evasion of therapeutic monoclonal and vaccine-elicited polyclonal neutralizing antibodies after two doses. mRNA vaccination as a third vaccine dose rescues and broadens neutralization. Importantly, the antiviral drugs remdesivir and molnupiravir retain efficacy against Omicron BA.1. Replication was similar for Omicron and Delta virus isolates in human nasal epithelial cultures. However, in lung cells and gut cells, Omicron demonstrated lower replication. Omicron spike protein was less efficiently cleaved compared with Delta. The differences in replication were mapped to the entry efficiency of the virus on the basis of spike-pseudotyped virus assays. The defect in entry of Omicron pseudotyped virus to specific cell types effectively correlated with higher cellular RNA expression of TMPRSS2, and deletion of TMPRSS2 affected Delta entry to a greater extent than Omicron. Furthermore, drug inhibitors targeting specific entry pathways(3) demonstrated that the Omicron spike inefficiently uses the cellular protease TMPRSS2, which promotes cell entry through plasma membrane fusion, with greater dependency on cell entry through the endocytic pathway. Consistent with suboptimal S1/S2 cleavage and inability to use TMPRSS2, syncytium formation by the Omicron spike was substantially impaired compared with the Delta spike. The less efficient spike cleavage of Omicron at S1/S2 is associated with a shift in cellular tropism away from TMPRSS2-expressing cells, with implications for altered pathogenesis
LSST: from Science Drivers to Reference Design and Anticipated Data Products
(Abridged) We describe here the most ambitious survey currently planned in
the optical, the Large Synoptic Survey Telescope (LSST). A vast array of
science will be enabled by a single wide-deep-fast sky survey, and LSST will
have unique survey capability in the faint time domain. The LSST design is
driven by four main science themes: probing dark energy and dark matter, taking
an inventory of the Solar System, exploring the transient optical sky, and
mapping the Milky Way. LSST will be a wide-field ground-based system sited at
Cerro Pach\'{o}n in northern Chile. The telescope will have an 8.4 m (6.5 m
effective) primary mirror, a 9.6 deg field of view, and a 3.2 Gigapixel
camera. The standard observing sequence will consist of pairs of 15-second
exposures in a given field, with two such visits in each pointing in a given
night. With these repeats, the LSST system is capable of imaging about 10,000
square degrees of sky in a single filter in three nights. The typical 5
point-source depth in a single visit in will be (AB). The
project is in the construction phase and will begin regular survey operations
by 2022. The survey area will be contained within 30,000 deg with
, and will be imaged multiple times in six bands, ,
covering the wavelength range 320--1050 nm. About 90\% of the observing time
will be devoted to a deep-wide-fast survey mode which will uniformly observe a
18,000 deg region about 800 times (summed over all six bands) during the
anticipated 10 years of operations, and yield a coadded map to . The
remaining 10\% of the observing time will be allocated to projects such as a
Very Deep and Fast time domain survey. The goal is to make LSST data products,
including a relational database of about 32 trillion observations of 40 billion
objects, available to the public and scientists around the world.Comment: 57 pages, 32 color figures, version with high-resolution figures
available from https://www.lsst.org/overvie
DISPARE: DIScriminative PAttern REfinement for Position Weight Matrices
<p>Abstract</p> <p>Background</p> <p>The accurate determination of transcription factor binding affinities is an important problem in biology and key to understanding the gene regulation process. Position weight matrices are commonly used to represent the binding properties of transcription factor binding sites but suffer from low information content and a large number of false matches in the genome. We describe a novel algorithm for the refinement of position weight matrices representing transcription factor binding sites based on experimental data, including ChIP-chip analyses. We present an iterative weight matrix optimization method that is more accurate in distinguishing true transcription factor binding sites from a negative control set. The initial position weight matrix comes from JASPAR, TRANSFAC or other sources. The main new features are the discriminative nature of the method and matrix width and length optimization.</p> <p>Results</p> <p>The algorithm was applied to the increasing collection of known transcription factor binding sites obtained from ChIP-chip experiments. The results show that our algorithm significantly improves the sensitivity and specificity of matrix models for identifying transcription factor binding sites.</p> <p>Conclusion</p> <p>When the transcription factor is known, it is more appropriate to use a discriminative approach such as the one presented here to derive its transcription factor-DNA binding properties starting with a matrix, as opposed to performing <it>de novo </it>motif discovery. Generating more accurate position weight matrices will ultimately contribute to a better understanding of eukaryotic transcriptional regulation, and could potentially offer a better alternative to <it>ab initio </it>motif discovery.</p
Constraints on models of the Higgs boson with exotic spin and parity using decays to bottom-antibottom quarks in the full CDF data set
A search for particles with the same mass and couplings as those of the standard model Higgs boson but different spin and parity quantum numbers is presented. We test two specific alternative Higgs boson hypotheses: a pseudoscalar Higgs boson with spin-parity JP=0- and a gravitonlike Higgs boson with JP=2+, assuming for both a mass of 125GeV/c2. We search for these exotic states produced in association with a vector boson and decaying into a bottom-antibottom quark pair. The vector boson is reconstructed through its decay into an electron or muon pair, or an electron or muon and a neutrino, or it is inferred from an imbalance in total transverse momentum. We use expected kinematic differences between events containing exotic Higgs bosons and those containing standard model Higgs bosons. The data were collected by the CDF experiment at the Tevatron proton-antiproton collider, operating at a center-of-mass energy of s=1.96TeV, and correspond to an integrated luminosity of 9.45fb-1. We exclude deviations from the predictions of the standard model with a Higgs boson of mass 125GeV/c2 at the level of 5 standard deviations, assuming signal strengths for exotic boson production equal to the prediction for the standard model Higgs boson, and set upper limits of approximately 30% relative to the standard model rate on the possible rate of production of each exotic state
Regional food trade and policy in West Africa in relation to structural adjustment
Drell-Yan lepton pairs are produced in the process through an intermediate boson. The lepton angular distributions are used to provide information on the electroweak-mixing parameter via its observable effective-leptonic , or . A new method to infer , or equivalently, the W-boson mass M_W, is developed and tested using a previous CDF Run II measurement of angular distributions from electron pairs in a sample corresponding to 2.1 fb-1 of integrated luminosity from collisions at a center-of-momentum energy of 1.96 TeV. The value of is found to be 0.2328 +- 0.0011. Within a specified context of the standard model, this results in = 0.2246 +- 0.0011 which corresponds to a W-boson mass of 80.297 +- 0.055 GeV/c^2, in agreement with previous determinations in electron-position collisions and at the Tevatron collider
Third-Party Effects
Most theories about effects of social embeddedness on trust define mechanisms that assume someone’s decision to trust is based on the reputation of the person to be trusted or on other
available information. However, there is little empirical evidence about how subjects use the information that is available to them. In this chapter, we derive hypotheses about the effects of
reputation and other information on trust from a range of theories and we devise an experiment that allows for testing these hypotheses simultaneously. We focus on the following mechanisms: learning, imitation, social comparison, and control. The results show that actors learn particularly from their own past experiences. Considering third-party information, imitation seems to be especially important
- …