5 research outputs found

    Functional Assessment and Patient-Related Outcomes after Gluteus Maximus Flap Transfer in Patients with Severe Hip Abductor Deficiency

    Get PDF
    (1) Background: Degeneration of the hip abductor mechanism, a well-known cause of functional limitation, is difficult to treat and is associated with a reduced health-related quality of life (HRQOL). The gluteus maximus muscle flap is a treatment option to support a severely degenerative modified gluteus medius muscle. Although several reports exist on the clinical outcome, there remains a gap in the literature regarding HRQOL in conjunction with functional results. (2) Methods: The present study consists of 18 patients with a mean age of 64 (53‒79) years, operatively treated with a gluteus maximus flap due to chronic gluteal deficiency. Fifteen (83%) of these patients presented a history of total hip arthroplasty or revision arthroplasty. Pre and postoperative pain, Trendelenburg sign, internal rotation lag sign, trochanteric pain syndrome, the Harris Hip Score (HHS), and abduction strength after Janda (0‒5) were evaluated. Postoperative patient satisfaction and health-related quality of life, according to the Short Form 36 (SF-36), were used as patient-reported outcome measurements (PROMs). Postoperative MRI scans were performed in 13 cases (72%). (3) Results: Local pain decreased from NRS 6.1 (0-10) to 4.9 (0-8) and 44% presented with a negative Trendelenburg sign postoperatively. The overall HHS results (p = 0.42) and muscular abduction strength (p = 0.32) increased without significance. The postoperative HRQOL reached 46.8 points (31.3-62.6) for the mental component score and 37.1 points (26.9-54.7) for the physical component score. The physical component results presented a high level of positive correlation with HHS scores postoperatively (R = 0.88, p < 0.001). Moreover, 72% reported that they would undergo the operative treatment again. The MRI overall showed no significant further loss of muscle volume and no further degeneration of muscular tissue. (4) Conclusions: Along with fair functional results, the patients treated with a gluteus maximus flap transfer presented satisfying long-term PROMs. Given this condition, the gluteus maximus muscle flap transfer is a viable option for selected patients with chronic gluteal deficiency

    Manganese Superoxide Dismutase: Guardian of the Powerhouse

    Get PDF
    The mitochondrion is vital for many metabolic pathways in the cell, contributing all or important constituent enzymes for diverse functions such as β-oxidation of fatty acids, the urea cycle, the citric acid cycle, and ATP synthesis. The mitochondrion is also a major site of reactive oxygen species (ROS) production in the cell. Aberrant production of mitochondrial ROS can have dramatic effects on cellular function, in part, due to oxidative modification of key metabolic proteins localized in the mitochondrion. The cell is equipped with myriad antioxidant enzyme systems to combat deleterious ROS production in mitochondria, with the mitochondrial antioxidant enzyme manganese superoxide dismutase (MnSOD) acting as the chief ROS scavenging enzyme in the cell. Factors that affect the expression and/or the activity of MnSOD, resulting in diminished antioxidant capacity of the cell, can have extraordinary consequences on the overall health of the cell by altering mitochondrial metabolic function, leading to the development and progression of numerous diseases. A better understanding of the mechanisms by which MnSOD protects cells from the harmful effects of overproduction of ROS, in particular, the effects of ROS on mitochondrial metabolic enzymes, may contribute to the development of novel treatments for various diseases in which ROS are an important component

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    No full text
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field
    corecore