191 research outputs found

    Abnormal connectional fingerprint in schizophrenia: a novel network analysis of diffusion tensor imaging data

    Get PDF
    The graph theoretical analysis of structural magnetic resonance imaging (MRI) data has received a great deal of interest in recent years to characterize the organizational principles of brain networks and their alterations in psychiatric disorders, such as schizophrenia. However, the characterization of networks in clinical populations can be challenging, since the comparison of connectivity between groups is influenced by several factors, such as the overall number of connections and the structural abnormalities of the seed regions. To overcome these limitations, the current study employed the whole-brain analysis of connectional fingerprints in diffusion tensor imaging data obtained at 3 T of chronic schizophrenia patients (n = 16) and healthy, age-matched control participants (n = 17). Probabilistic tractography was performed to quantify the connectivity of 110 brain areas. The connectional fingerprint of a brain area represents the set of relative connection probabilities to all its target areas and is, hence, less affected by overall white and gray matter changes than absolute connectivity measures. After detecting brain regions with abnormal connectional fingerprints through similarity measures, we tested each of its relative connection probability between groups. We found altered connectional fingerprints in schizophrenia patients consistent with a dysconnectivity syndrome. While the medial frontal gyrus showed only reduced connectivity, the connectional fingerprints of the inferior frontal gyrus and the putamen mainly contained relatively increased connection probabilities to areas in the frontal, limbic, and subcortical areas. These findings are in line with previous studies that reported abnormalities in striatal–frontal circuits in the pathophysiology of schizophrenia, highlighting the potential utility of connectional fingerprints for the analysis of anatomical networks in the disorder

    Reduced intrinsic visual cortical connectivity is associated with impaired perceptual closure in schizophrenia

    Get PDF
    Sensory perceptual processing deficits, such as impaired visual object identification and perceptual closure, have been reported in schizophrenia. These perceptual impairments may be associated with neural deficits in visual association areas, including lateral occipital cortex and inferior temporal areas. However, it remains unknown if such deficits can be found in the intrinsic architecture of the visual system. In the current study, we measured perceptual closure performance and resting-state functional connectivity using functional magnetic resonance imaging (FMRI) in 16 schizophrenia patients and 16 matched healthy controls. We estimated intrinsic functional connectivity using self-organized grouping spatial ICA, which clusters component maps in the subject space according to spatial similarity. Patients performed worse than controls in the perceptual closure task. This impaired closure performance of patients was correlated with increased severity of psychotic symptoms. We also found that intrinsic connectivity of the visual processing system was diminished in patients compared to controls. Lower perceptual closure performance was correlated to lower visual cortical intrinsic connectivity overall. We suggest that schizophrenia is associated with impaired intrinsic connectivity of the visual system, and that it is a potential mechanism leading to impaired visual object perception. These findings contribute to increasing evidence for impairments of higher visual functions in schizophrenia

    Adolescent brain maturation and cortical folding: evidence for reductions in gyrification

    Get PDF
    Evidence from anatomical and functional imaging studies have highlighted major modifications of cortical circuits during adolescence. These include reductions of gray matter (GM), increases in the myelination of cortico-cortical connections and changes in the architecture of large-scale cortical networks. It is currently unclear, however, how the ongoing developmental processes impact upon the folding of the cerebral cortex and how changes in gyrification relate to maturation of GM/WM-volume, thickness and surface area. In the current study, we acquired high-resolution (3 Tesla) magnetic resonance imaging (MRI) data from 79 healthy subjects (34 males and 45 females) between the ages of 12 and 23 years and performed whole brain analysis of cortical folding patterns with the gyrification index (GI). In addition to GI-values, we obtained estimates of cortical thickness, surface area, GM and white matter (WM) volume which permitted correlations with changes in gyrification. Our data show pronounced and widespread reductions in GI-values during adolescence in several cortical regions which include precentral, temporal and frontal areas. Decreases in gyrification overlap only partially with changes in the thickness, volume and surface of GM and were characterized overall by a linear developmental trajectory. Our data suggest that the observed reductions in GI-values represent an additional, important modification of the cerebral cortex during late brain maturation which may be related to cognitive development

    Arcuate Fasciculus Abnormalities and Their Relationship with Psychotic Symptoms in Schizophrenia

    Get PDF
    Disruption of fronto-temporal connections involving the arcuate fasciculus (AF) may underlie language processing anomalies and psychotic features such as auditory hallucinations in schizophrenia. No study to date has specifically investigated abnormalities of white matter integrity at particular loci along the AF as well as its regional lateralization in schizophrenia. We examined white matter changes (fractional anisotropy (FA), axial diffusivity (AD), asymmetry indices) along the whole extent of the AF and their relationship with psychotic symptoms in 32 males with schizophrenia and 44 healthy males. Large deformation diffeomorphic metric mapping and Fiber Assignment Continuous Tracking were employed to characterize FA and AD along the geometric curve of the AF. Our results showed that patients with schizophrenia had lower FA in the frontal aspects of the left AF compared with healthy controls. Greater left FA and AD lateralization in the temporal segment of AF were associated with more severe positive psychotic symptoms such as delusions and hallucinations in patients with schizophrenia. Disruption of white matter integrity of the left frontal AF and accentuation of normal left greater than right asymmetry of FA/AD in the temporal AF further support the notion of aberrant fronto-temporal connectivity in schizophrenia. AF pathology can affect corollary discharge of neural signals from frontal speech/motor initiation areas to suppress activity of auditory cortex that may influence psychotic phenomena such as auditory hallucinations and facilitate elaboration of delusional content

    Interaction of language, auditory and memory brain networks in auditory verbal hallucinations

    Get PDF
    Auditory verbal hallucinations (AVH) occur in psychotic disorders, but also as a symptom of other conditions and even in healthy people. Several current theories on the origin of AVH converge, with neuroimaging studies suggesting that the language, auditory and memory/limbic networks are of particular relevance. However, reconciliation of these theories with experimental evidence is missing. We review 50 studies investigating functional (EEG and fMRI) and anatomic (diffusion tensor imaging) connectivity in these networks, and explore the evidence supporting abnormal connectivity in these networks associated with AVH. We distinguish between functional connectivity during an actual hallucination experience (symptom capture) and functional connectivity during either the resting state or a task comparing individuals who hallucinate with those who do not (symptom association studies). Symptom capture studies clearly reveal a pattern of increased coupling among the auditory, language and striatal regions. Anatomical and symptom association functional studies suggest that the interhemispheric connectivity between posterior auditory regions may depend on the phase of illness, with increases in non-psychotic individuals and first episode patients and decreases in chronic patients. Leading hypotheses involving concepts as unstable memories, source monitoring, top-down attention, and hybrid models of hallucinations are supported in part by the published connectivity data, although several caveats and inconsistencies remain. Specifically, possible changes in fronto-temporal connectivity are still under debate. Precise hypotheses concerning the directionality of connections deduced from current theoretical approaches should be tested using experimental approaches that allow for discrimination of competing hypotheses

    Widespread white matter microstructural differences in schizophrenia across 4322 individuals:Results from the ENIGMA Schizophrenia DTI Working Group

    Get PDF
    The regional distribution of white matter (WM) abnormalities in schizophrenia remains poorly understood, and reported disease effects on the brain vary widely between studies. In an effort to identify commonalities across studies, we perform what we believe is the first ever large-scale coordinated study of WM microstructural differences in schizophrenia. Our analysis consisted of 2359 healthy controls and 1963 schizophrenia patients from 29 independent international studies; we harmonized the processing and statistical analyses of diffusion tensor imaging (DTI) data across sites and meta-analyzed effects across studies. Significant reductions in fractional anisotropy (FA) in schizophrenia patients were widespread, and detected in 20 of 25 regions of interest within a WM skeleton representing all major WM fasciculi. Effect sizes varied by region, peaking at (d=0.42) for the entire WM skeleton, driven more by peripheral areas as opposed to the core WM where regions of interest were defined. The anterior corona radiata (d=0.40) and corpus callosum (d=0.39), specifically its body (d=0.39) and genu (d=0.37), showed greatest effects. Significant decreases, to lesser degrees, were observed in almost all regions analyzed. Larger effect sizes were observed for FA than diffusivity measures; significantly higher mean and radial diffusivity was observed for schizophrenia patients compared with controls. No significant effects of age at onset of schizophrenia or medication dosage were detected. As the largest coordinated analysis of WM differences in a psychiatric disorder to date, the present study provides a robust profile of widespread WM abnormalities in schizophrenia patients worldwide. Interactive three-dimensional visualization of the results is available at www.enigma-viewer.org.Molecular Psychiatry advance online publication, 17 October 2017; doi:10.1038/mp.2017.170

    Connectivity disturbances in schizophrenia : evidence from anatomical and functional Magnetic Resonance Imaging

    No full text
    In 1911 Eugen Bleuler (Bleuler, 1911) postulated that schizophrenia was a disorder resulting from inability to properly integrate mental processes. Around the same time, Carl Wernicke (Wernicke, 1894) proposed that psychosis might result from disruption of white matter tracts. Both of these statements can be considered early cornerstones of modern connectivity hypotheses developed towards the end of the twentieth century by such researchers as Karl Friston (1998) and Nancy Andreansen (1998). In the current work, the hypothesis that schizophrenia, rather than being a disorder or either anatomical or functional connectivity, is a disorder where both of these processes interact and influence the clinical presentation of patients, is examined. This is achieved through a detailed examination of a sample of chronic schizophrenia patients using a combination of functional and anatomical Magnetic Resonance Imaging techniques. The relationship of these measures to clinical symptoms is also explored. In the first study, anatomical connectivity at the whole-brain level is examined using Diffusion Tensor Imaging. The results of the study contribute to the previous literature on auditory hallucinations in schizophrenia and provide the first direct correlation between increased anatomical connectivity and increased severity of psychotic symptoms. The second study provides a thorough examination of the interhemispheric connectivity. This is achieved through a detailed examination of the corpus callosum using a combination of diffusivity and volumetric values. This is the first study to date where several anatomical methods are used in one sample. The results illustrate the importance of using different techniques to accurately characterize anatomical abnormalities observed in schizophrenia. In addition, contrary to previous research reports, the results of the current study imply that only specific sub-sections of the corpus callosum are affected by anatomical abnormalities. The pattern of these changes may influence clinical presentation of patients. Finally, functional connectivity at the whole-brain level is examined during resting-state using Independent Component Analysis. Similarly to the results of the anatomical examinations, it provides further supporting evidence that the pattern of disturbances observed in the current sample of schizophrenia patients examined herein reflects a combination of hypo- and hyperconnectivity. Moreover, the study further validates resting-state functional Magnetic Resonance Imaging as a reliable tool for examining functional abnormalities in schizophrenia.Zu Beginn des 20. Jahrhunderts postulierte Eugen Bleuler (Bleuler, 1911), dass die Symptome der Schizophrenie aus einer Desintegration mentaler Prozesse resultieren. Etwa zur selben Zeit vermutete Carl Wernicke (1894), dass die Ursache psychotischer Störungen in einer Beeinträchtigung der Faserverbindungen der weißen Substanz liegen könnte. Beide Ideen können heute als Vorläufer moderner Diskonnektivitätshypothesen betrachtet werden, die gegen Ende des letzten Jahrhunderts von Karl Friston (1998) und Nancy Andreasen (1998) als Modelle zur Pathogenese der Schizophrenie weiterentwickelt worden sind. In der vorliegenden Arbeit wurde die Hypothese untersucht, dass schizophrene Psychosen auf einer Störung sowohl der strukturellen als auch der funktionellen Konnektivität beruhen und die klinische Symptomatik insbesondere durch die Interaktion dieser beiden Aspekte entscheidend beeinflusst wird. Zu diesem Zweck wurde eine Gruppe schizophrener Patienten mittels funktioneller und anatomischer kernspintopographischer Messungen des Gehirns untersucht. Ein Schwerpunkt der Arbeit lag dabei auf der Untersuchung des Einflusses struktureller und funktioneller Veränderungen des Gehirns auf die klinische Symptomatik. In der ersten Studie wurde die anatomische Konnektivität des Gehirns mittels Diffusion Tensor Imaging (DTI) gemessen. Die Ergebnisse erweitern die bisherigen Erkenntnisse über die Pathogenese akustische Halluzinationen in der Schizophrenie, indem sie zum ersten Mal eine direkte Korrelation zwischen der Stärke struktureller Faserverbindungen und der Ausprägung psychotischer Symptome im Sinne einer Hyperkonnektivität belegen. Die zweite Studie befasst sich mit der genaueren Untersuchung interhemisphärischer Konnektivität. Hierzu wurde eine detaillierte Auswertung volumetrischer und anatomischer DTI-Daten des Corpus callosum vorgenommen. Es handelt sich hierbei um die erste Studie, in der eine Kombination verschiedener Methoden aus dem Bereich der anatomischen Bildgebung des Gehirns innerhalb einer Stichprobe angewandt wurde. Die Ergebnisse veranschaulichen die Notwendigkeit, unterschiedliche bildgebende Methoden gezielt zu kombinieren, um die anatomischen Veränderungen bei der Schizophrenie exakt charakterisieren zu können. Im Gegensatz zu früheren Untersuchungen weisen die Ergebnisse der aktuellen Studie zudem darauf hin, dass nur bestimmte Subregionen des Corpus callosum von anatomischen Veränderungen betroffen sind. Darüber hinaus ließ sich zeigen, dass ein Zusammenhang zwischen dem Muster dieser Veränderungen und der klinischen Symptomkonstellation besteht. In der dritten Studie wurde die funktionelle Konnektivität des Gehirns im Ruhezustand mittels Independent Component Analysis (ICA) untersucht. Ähnlich wie die beiden anatomischen Studien liefert auch diese Untersuchung Hinweise darauf, dass unterschiedliche syndromale Erscheinungsformen der Schizophrenie durch unterschiedliche Ausprägungen regionaler Hypoand Hyperkonnektivität charakterisiert sind
    corecore