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ABSTRACT 

Schizophrenia is a complex disorder that may be the result of aberrant connections between specific brain 

regions rather than focal brain abnormalities. Here, we investigate relationships between brain structural 

connectivity as described by network analysis, intelligence, symptoms and polygenic risk scores (PGRS) for 

schizophrenia in a group of patients with schizophrenia and a group of healthy controls. Recently, researchers 

have shown an interest in the role of high centrality networks in the disorder. However, the importance of non-

central networks still remains unclear. Thus, we specifically examined network-averaged fractional anisotropy 

(mean edge weight) in central and non-central subnetworks. Connections with the highest betweenness 

centrality within the average network (>75% of centrality values) were selected to represent the central 

subnetwork. The remaining connections were assigned to the non-central subnetwork. Additionally, we 

calculated graph theory measures from the average network (connections that occur in at least 2/3 of 

participants). Density, strength, global efficiency and clustering coefficient were significantly lower in patients 

compared with healthy controls for the average network (pFDR < 0.05). All metrics across networks were 

significantly associated with intelligence (pFDR < 0.05). There was a tendency towards significance for a 

correlation between intelligence and PGRS for schizophrenia (r = -0.508, p = 0.052) that was significantly 

mediated by central and non-central mean edge weight and every graph metric from the average network. 

These results are consistent with the hypothesis that intelligence deficits are associated with a genetic risk for 

schizophrenia which is mediated via the disruption of distributed brain networks. 
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INTRODUCTION 

Schizophrenia is a neuropsychiatric disorder characterised by delusions, hallucinations, absence of function 

and cognitive impairments. It is increasingly seen as the result of aberrant connections between specific brain 

regions rather than focal brain abnormalities (Friston, 1998; Friston & Frith, 1995; Stephan, Baldeweg, & 

Friston, 2006; Stephan, Friston, & Frith, 2009). The dysconnectivity hypothesis of schizophrenia suggests that 

abnormal brain integration may underlie the cognitive profile and symptoms found in the disorder. There is 

consistent evidence supporting reduced levels of overall structural connectivity in schizophrenia using 

diffusion tensor MRI (DT-MRI) with frontal, parietal and temporal projections being the most consistently 

impaired in the disorder (Skudlarski et al., 2010; van den Heuvel et al., 2010; van den Heuvel & Fornito, 2014; 

Zalesky et al., 2011). Additionally, more specific white matter alterations in the uncinate fasciculus, corpus 

callosum, cingulum and arcuate fasciculus are consistently described (reviewed in Burns et al., 2003; Ellison-

Wright & Bullmore, 2009; McIntosh et al., 2005). Even though a number of studies have discussed the 

importance of white matter impairments in schizophrenia, there is still no consensus on how to measure 

structural dysconnectivity in the disorder. One approach is to characterise how impairments in white matter 

microstructure affect the organization of the structural connectome using graph theory, which conceives the 

brain as a network composed of nodes and the connections (edges) between them (Bullmore & Sporns, 2009). 

Graph theory segregation measures, such as clustering coefficient and modularity, are reportedly altered in 

schizophrenia (Alexander-Bloch et al., 2010; van den Heuvel et al., 2013; van den Heuvel & Fornito, 2014; 

Zalesky et al., 2011) suggesting a more segregated pattern of network organization. In line with this hypothesis, 

numerous authors have found longer path lengths and reductions in communication efficiency, proposing 

reduced communication between more segregated areas of the brain (reviewed in van den Heuvel & Fornito, 

2014). 

Nodes and edges can be associated with peripheral or more central tasks, depending on their degree of 

connectivity and their position within or between modules (Sporns, 2011). Nodes characterised by high degree 

and high centrality are termed ‘hubs’. Several lines of investigation have suggested that topological 

organization of hub nodes appear to be altered in schizophrenia. Both structural covariance and structural 

connectivity studies in schizophrenia suggest a less hierarchical organization, a less prominent role of high 

degree hub regions such as the prefrontal and parietal cortex, while non-frontal hubs emerge more prominently 
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(Bassett et al., 2008; Guusje Collin et al., 2013; Zhang et al., 2012). Rubinov et al. (2009) suggested that a 

characteristic of the disorder is a randomization of connections, an alteration of community structure which 

results in impaired integration and segregation, and reduced centrality of cortical hubs. Most brain imaging 

studies in schizophrenia focus on these effects in networks with high centrality while the remaining 

connections are overlooked (Collin et al., 2014; Schmidt et al., 2016). Due to the apparent hierarchical 

disorganization of the brain in schizophrenia the role of these central nodes may be displaced to other brain 

regions or networks. Thus, in this study we address specifically networks based on centrality to investigate this 

hypothesis. Even though the cognitive and symptomatic implications of various network metrics have been 

addressed, there has been little discussion about the role of non-central networks in the disorder.  

 Schizophrenia is associated with cognitive deficits; some correlations between intelligence and the 

brain's function and structure have been described in healthy participants. Although there are a small number 

of established associations between intelligence and brain basic structural parameters, such as fractional 

anisotropy (FA), the relationship between the observed white matter alterations in schizophrenia and 

intelligence remains unclear. However, graph theory metrics may be able to provide greater explanatory power 

for these cognitive deficits in schizophrenia than more traditional structural connectivity measures, such as FA 

(Alloza et al., 2016). There is some evidence that structural network metrics are related to intelligence and that 

there is a degree of shared genetic overlap between schizophrenia and these measures. For instance, Li et al. 

(2009) found significant correlations between intelligence and network properties in a healthy cohort of 

subjects. Specifically, higher intelligence scores were associated with shorter path lengths and higher global 

efficiency. Yeo et al. (2016) showed that global measures of increased characteristic path length and reduced 

overall connectivity predicted lower general intelligence in a group of patients with schizophrenia, while van 

den Heuvel et al. (2009) also found a strong negative correlation between characteristic path length and IQ 

suggesting that more efficiently connected brains tend to show higher levels of intelligence. Hence, graph 

theory metrics may provide an insight into the underlying brain structural substrate for intelligence.  

 Differences in structural connectivity are useful for establishing brain topology abnormalities in 

schizophrenia compared with healthy participants. However, as our aim is to shed light on the clinical 

manifestation of schizophrenia we therefore examine the extent to which clinical symptoms are associated 

with brain extracted measures. What we know about brain connectivity and clinical symptoms is largely based 
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upon empirical studies that investigate the relationship between white matter and different symptom’s scales. 

For instance, FA of specific white matter tracts has been significantly associated with positive symptoms in 

the disorder. These tracts include the internal capsule, fronto-occipital fasciculus, superior longitudina l 

fasciculus, cingulum and corpus callosum (Mitelman et al., 2007; Rotarska-Jagiela et al., 2008; Seok et al., 

2007). To date, several authors have examined the effects of graph theory metrics of connectivity on 

symptomatology in schizophrenia. Positive symptom severity has been associated with reduced overall 

connectivity, increases and decreases in structural and functional coupling, strength of temporal and frontal 

regions, reduced network efficiency and reduced clustering (reviewed van den Heuvel & Fornito, 2014). Wang 

et al. (2012) found significant associations between global efficiency and positive, negative and total 

symptoms. However, most studies focus on functional connectivity determined using fMRI and thus, 

uncertainty remains regarding the relationship between structural connectivity measured in central, non-central 

and average networks and genetic risk factors. 

  Graph theory analysis has shown that impairments present in patients with schizophrenia are also 

found in their relatives suggesting a genetic basis (Clemm von Hohenberg et al., 2014; Guusje Collin et al., 

2014; Skudlarski et al., 2013). Moreover, topological network properties have been found to be heritable (see, 

Thompson et al., 2013). For instance, in white matter FA, the variance explained by genetic factors has been 

reported to be between 75-90% in almost every white matter tract (Chiang et al., 2011). Moreover, in the same 

study, heritability of FA was associated with the level of IQ. Genome-wide association studies (GWAS) have 

indicated a polygenic component of schizophrenia with hundreds of common alleles of small effect at the 

population level having been reported (International Schizophrenia Consortium et al., 2009; Schizophrenia 

Working Group of the Psychiatric Genomics Consortium, 2014). Thus far, only a small number of studies have 

analysed the relationship between polygenic risk scores (PGRS), neuroimaging biomarkers and/or cognition 

(Birnbaum & Weinberger, 2013; McIntosh et al., 2013; Whalley et al., 2015). Connectomic measures are, 

potentially, possible intermediate phenotypes between genetic liability and cognitive deficits in schizophrenia.  

In the current study we investigate relationships between brain structural connectivity described by 

network-averaged FA (mean edge weight) measured in central and non-central networks and by graph theory 

metrics calculated from the average network (defined as networks in which connections that occur in at least 

2/3 of participants are retained) in relation to intelligence, clinical symptoms and PGRS for schizophrenia in 
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patients with schizophrenia and healthy controls. We will focus on graph theory metrics that have been 

consistently reported to be impaired in schizophrenia, namely mean edge weight, density, strength, clustering 

coefficient and global efficiency in the average network. Due to the severely affected hierarchical 

disorganization of the brain found in schizophrenia, our aim is to investigate the roles central and non-central 

network mean edge weight play in this disorder. Thus, this is the first study where intelligence, symptoms and 

PGRS have been studied together in relation to networks based on their centrality. Specifically we 

hypothesized that impaired structural organization of the networks (decreased mean edge weight, density, 

strength, clustering coefficient and global efficiency) will be associated with lower intelligence, higher genetic 

risk factor for schizophrenia and higher symptom score. 
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METHODS 

PARTICIPANTS 

Information about participants has been reported in detail previously (Whalley et al., 2015). Participants were 

recruited across Scotland as part of the Scottish Family Mental Health Study. DT-MRI data were acquired from 

a total of 28 individuals diagnosed with schizophrenia and 36 healthy controls. Diagnosis of schizophrenia was 

confirmed using the structured clinical interview for DSM IV (SCID) administered by one of two trained 

psychiatrists (First et al., 2002). Exclusion criteria included any major medical or neurological conditions, or 

any personal history of substance misuse in the last year. Additionally, subjects were excluded if there were 

MRI safety considerations. A detailed description of the study and written informed consent were given to all 

recruited individuals. The study was approved by the Multicentre Research Ethics Committee for Scotland 

(09/MRE00/81). 

 

SCAN ACQUISITION 

All imaging data were collected on a MAGNETOM Verio 3T MRI scanner running Syngo MR B17 software 

(Siemens Healthcare, Erlangen, Germany). For each subject, whole brain DT-MRI data were acquired using a 

prototype single-shot spin-echo echo-planar (EP) imaging sequence with diffusion-encoding gradients applied 

in 56 directions (b=1000 s/mm2) and six T2-weighted (b=0 s/mm2) baseline scans. Fifty-five 2.5 mm thick 

axial slices were acquired with a field-of-view of 240 × 240 mm and matrix 96 × 96 giving 2.5 mm isotropic 

voxels. In the same session, a 3D T1-magnetization-prepared rapidly acquired gradient-echo (MPRAGE) 

volume was acquired in the coronal plane with 160 contiguous slices and 1 mm isotropic voxel resolution. 

 

IMAGE ANALYSIS 

Image processing 

Each 3D T1-weighted MPRAGE volume was parcellated into 85 (Desikan-Killiany atlas; Desikan et al., 2006) 

and 165 (Destrieux atlas) regions-of-interest (ROI) using FreeSurfer (http://surfer.nmr.mgh.harvard.edu). 

The results of the segmentation procedure were then used to construct grey and white matter masks for use in 

network construction and to constrain the tractography output as described below. Using tools provided by the 

FDT package in FSL (http://fsl.fmrib.ox.ac.uk/fsl), the DT-MRI data were pre-processed to reduce systematic 

http://surfer.nmr.mgh.harvard.edu/
http://fsl.fmrib.ox.ac.uk/fsl
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imaging distortions and bulk subject motion artifacts by affine registration of all subsequent EP volumes to the 

first T2-weighted EP volume (Jenkinson & Smith, 2001). Skull stripping and brain extraction were performed 

on the registered T2-weighted EP volumes and applied to the FA volume calculated by DTIFIT in each subject 

(Basser & Pierpaoli, 1996; Smith, 2002). The neuroanatomical ROIs determined by Freesurfer were then 

aligned from 3D T1-weighted volume to diffusion space using a cross-modal nonlinear registration method. 

As a first step, linear registration was used to initialize the alignment of each brain-extracted FA volume to the 

corresponding FreeSurfer extracted 3D T1-weighted brain volume using a mutual information cost function 

and an affine transform with 12 degrees of freedom (Jenkinson & Smith, 2001). Following this initializat ion, 

a nonlinear deformation field based method (FNIRT) was used to refine local alignment (Andersson, Jenkinson, 

& Smith, 2007). FreeSurfer segmentations and anatomical labels were then aligned to diffusion space using 

nearest neighbour interpolation. 

 

Tractography 

Whole-brain probabilistic tractography was performed using FSL’s BedpostX/ProbTrackX algorithm 

(Behrens, Berg, Jbabdi, Rushworth, & Woolrich, 2007). Probability density functions, which describe the 

uncertainty in the principal directions of diffusion, were computed with a two-fibre model per voxel (Behrens 

et al., 2007). Streamlines were then constructed by sampling from these distributions during tracking using 

100 Markov Chain Monte Carlo iterations with a fixed step size of 0.5 mm between successive points. Tracking 

was initiated from all white matter voxels (Buchanan, Pernet, Gorgolewski, Storkey, & Bastin, 2014) and 

streamlines were constructed in two collinear directions until terminated by the following stopping criteria 

designed to minimize the amount of anatomically implausible streamlines: (i) exceeding a curvature threshold 

of 70 degrees; (ii) entering a voxel with FA below 0.1 (Verstraete, Veldink, Mandl, van den Berg, & van den 

Heuvel, 2011); (iii) entering an extra-cerebral voxel; (iv) exceeding 200 mm in length; and (v) exceeding a 

distance ratio metric of 10. The distance ratio metric (Bullitt, Gerig, Pizer, Lin, & Aylward, 2003), excludes 

implausibly tortuous streamlines. For instance, a streamline with a total path length 10 times longer than the 

distance between end points was considered to be invalid. The values of the curvature, anisotropy and distance 

ratio metric constraints were set empirically and informed by visual assessment of the resulting streamlines. 
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Network construction 

FA-weighted networks were constructed by recording the mean FA value along streamlines connecting all ROI 

(network node) pairs. The endpoint of a streamline was considered to be the first grey matter ROI encountered 

when tracking from the seed location. 

In this study we assume the existence of a central subnetwork that is shared across participants 

(Reijmer et al., 2016). To identify this central subnetwork, the average brain network across both patients and 

controls was determined by including those connections which occurred in more than 2/3 of the participants 

(de Reus and van den Heuvel, 2013). Connections with the highest centrality (the fraction of all shortest paths 

in the network that contain a given connection, also referred as “edge betweenness centrality”) within this 

average network (> threshold value of 75 %) were selected and used to create a mask representing the central 

subnetwork. The remaining connections were assigned to the non-central subnetwork mask. Therefore, 

connections with high values of centrality are involved in a large number of shortest paths and as a consequence 

contribute to the global efficiency of the network. These masks were then used as templates and applied to 

each participant’s connectivity matrix to select central and non-central subnetworks. Since the threshold value 

of 75% is arbitrary, analyses were repeated for thresholds of 25 and 50 % of connections with highest centrality.  

Organizational properties of the different networks were then obtained using the brain connectivity 

toolbox (www.brain-connectivity-toolbox.net). For each FA-weighted connectivity matrix for the average 

network, five global network measures were computed, namely: mean edge weight (mean value of FA across 

the network), density (the fraction of present connections to possible connections), strength (the average sum 

of weights per node), clustering coefficient (fraction of triangles around a node) and global efficiency (the 

average of the inverse shortest path length). As a results of possible alterations in topology when extracting 

central and non-central networks, only mean edge weight was computed for these subnetworks (Reijmer et al., 

2016). 

 

POLYGENIC RISK SCORE CALCULATION 

PGRS is a method to aggregate the small effects that contribute to the liability of schizophrenia on predicting 

the disorder. The capacity to predict onset of schizophrenia has been established and has been reported to 

explain up to 7% of additive genetic liability for the disorder (Schizophrenia Working Group of the Psychiatric 

Genomics Consortium, 2014). PGRS for schizophrenia were created for all individuals with suitable genotype 

http://www.brain-connectivity-toolbox.net/


Clara Alloza 
 

10 
 

data; only genotypes passing stringent quality control were used in analyses. PGRS for schizophrenia were 

estimated using summary data from an independent GWAS of schizophrenia in 150064 individuals (36989 

cases and 113075 controls), conducted by the Psychiatry Genomics Consortium (Schizophrenia Working 

Group of the Psychiatric Genomics Consortium, 2014). PGRS were estimated using the PRSice software 

package according to previously described protocols (Euesden, Lewis, & O’Reilly, 2015), with linkage 

disequilibrium and distance thresholds for clumping of r2 = 0.2 and within a 300kb window. Five scores were 

created for each individual using single-nucleotide polymorphisms (SNPs) selected according to the 

significance of their association with the phenotype at nominal p-value thresholds of 0.01, 0.05, 0.1, 0.5 and 

1.0 (all SNPs). For the analysis we used the threshold of 0.5 which explained the most variance in our data and 

has been reported to maximally capture schizophrenia liability (International Schizophrenia Consortium et al., 

2009). The four multidimensional scaling factors were entered as additional ‘nuisance’ covariates to control 

for population stratification, along with age. 

 

COGNITIVE TESTING & MEDICATION 

Participants underwent cognitive assessment using tests from the Wechsler Adult Intelligence Scale (WASI; 

Wechsler, 1955) using standard administration and scoring procedures. Symptom severity was assessed using 

the Positive and Negative Symptoms Scale (PANSS) (Kay, Fiszbein, & Opler, 1987). Full-scale IQ was derived 

from four subtests of the WASI: Vocabulary, Block Design, Similarities and Matrix Reasoning. Participants 

also provided information on antipsychotic medication which was transformed into chlorpromazine 

equivalents (CPZ) (Woods, 2003). 

 

STATISTICAL ANALYSIS 

Group differences were analysed using a multivariate general linear model (GLM). Dependent variables were 

mean edge weight for central, non-central and connectivity metrics for the average networks separately. Age, 

sex, diagnosis and the interaction between diagnosis and sex were entered as predictors. FA was added as 

additional predictor in the average network analysis. Due to small sample size, effect sizes were then calculated 

using Hedges’ g and based on the p-value of the individual analysis of covariance (ANCOVAS). Using the 

whole sample, regression analyses were then performed separately for central, non-central and average metrics 
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and IQ. Due to the distribution of data, PANSS positive, negative and total symptom scores were only analysed 

in the patient sample. For both models, age, gender and CPZ were used as covariates. P-values (alpha = 0.05) 

were corrected for multiple comparisons using False Discovery Rate (FDR; pFDR) (Benjamini & Hochberg, 

1995). Analyses were repeated for varying threshold values to define the number of central connections (25, 

50 and 75 %). Analyses were also repeated for different Freesurfer brain atlases (Desikan and Destrieux). 

Regression models were then applied to investigate the association between risk score and case-control status 

in the whole sample. Connectivity metrics were dependent variables and principal components for population 

stratification, PGRS, age, gender and diagnosis as predictors. All statistical analyses were performed with R 

version 3.2.3 (https://www.r-project.org). 

Mediation analysis was subsequently used to examine the hypothesis that higher PGRS is related to 

poorer intelligence via reduced structural connectivity. We employed the PROCESS macro in SPSS 22.0 

(Hayes & Rockwood, 2016) to formally quantify mediation effects using 5000 bootstrapped samples. Due to 

our clear directional hypothesis, a one tailed test of mediation was conducted (http://www.afhayes.com). 

Mediation effects were considered significant if the confidence interval did not include zero (Preacher & 

Hayes, 2008).  
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RESULTS 

Table I shows demographic data for both healthy controls and schizophrenia patients. 

 

 

 

 

 

 

 

 

 

Average network  

Diagnosis (F (5, 54) = 703.1, p < 0.001, partial eta squared = 0.080), age (F (5, 54) = 137.64, p < 0.001, partial 

eta squared = 0.030), gender (F (5, 54) = 19.80, p < 0.001, partial eta squared = 0.032), mean edge weight (FA) 

(F (5, 54) = 15263.7, p < 0.001, partial eta squared = 0.001) effects were significant for the average network 

graph theory metrics. 

As indicated in Table II, there were significant differences in network density (Hedges’ g = 0.54 (0.03, 

1.05), pFDR = 0.04), strength (Hedges’ g = 1.08 (0.54, 1.62), pFDR < 0.001), global efficiency (Hedges’ g = 1.95 

(1.34, 2.56), pFDR < 0.001) and clustering coefficient (Hedges’ g = 1.94 (1.33, 2.55), pFDR < 0.001) between 

groups. Mean edge weight showed a tendency towards significance (Hedges’ g = 0.43 (-0.07, 0.93), pFDR = 

0.08). All metrics were reduced in patients compared to healthy controls. Boxplots for group differences can 

be found in Supplementary Material Figure 1. 

 

Central subnetwork  

Figure 1 shows network maps for the central (> 75 % of centrality values) and non-central subnetworks across 

all participants. There was no significant difference in central subnetwork mean edge weight between patients 

with schizophrenia and healthy controls (mean HC = 0.45, SD = ± 0.02; mean SZ = 0.44, SD = ± 0.02) (Hedges’ 

  HC SZ p-value 

Age in years (SD) 37.22 (14.99) 38.04 (10.34) 0.807 

Gender, M/F (%) 53/47 57/43 0.733 

IQ (SD)  116.11 (10.75) 105.09 (15.89) 0.003 

PANSS positive (SD) [Range]  12.30 (5.19) [7, 28]  
PANSS negative (SD) [Range]  13 (7.05) [7,35]  

PANSS total (SD) [Range]  51.64 (17.33) [34, 91]  

Age of onset in years  25.25 (9.89)  

Duration of illness in years  13.58 (10.30)  

CPZ (SD)   434.97 (371.90)    

 
Note. HC = healthy controls, SZ = schizophrenia. CPZ= chlorpromazine equivalents. 
SD= Standard deviation. Bold typeface indicates significant group difference (p < 0.05). 
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g = 0.36 95% CI (-0.14, 0.86), p > 0.05). Central mean edge weight was reduced in patients compared with 

healthy controls. 

 

Figure. 1. Medium view of (A) central (> 75 % of centrality values) and (B) non-central subnetworks for all 

participants indicating node location and edge (FA) strength. The nodes which are connected by edges with 

the highest weights (FA > 0.5) in the central subnetwork are brainstem, left hemisphere precuneus cortex, 

thalamus, caudate, ventral diencephalon and superior frontal gyrus, and bilateral caudal anterior division of 

the cingulate cortex and isthmus division of the cingulate gyrus. Nodes are colour-coded to indicate in which 

lobe they are situated. 

 

Non-central subnetwork  

There was a tendency towards significance for a difference in mean edge weight between patients with 

schizophrenia and healthy controls (mean HC = 0.44, SD = ± 0.02; mean SZ = 0.43, SD = ± 0.02) (Hedges’ g = 
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0.45 95% CI (-0.06, 0.95), p = 0.07). Non-central mean edge weight was reduced in patients compared with 

healthy controls. 

 

Table II: Mean ± standard deviation (SD) values of connectivity metrics the average network for healthy 

controls and patients with schizophrenia. 

 

 

 

 

 

Note. HC = healthy controls, SZ = schizophrenia; bold typeface indicates significant group difference (pFDR 

< 0.05). 

 

Age, antipsychotic medication and illness duration 

There were positive significant associations between age, mean edge weight (r = -0.290, p = 0.02) and 

clustering coefficient (r = -0.269, p = 0.03) for the average network. However these associations did not survive 

multiple comparison correction (pFDR > 0.05). Antipsychotic medication show a significant effect on mean 

edge weight (r = -0.262, pFDR = 0.048), strength (r = -0.287, pFDR = 0.048), global efficiency (r = -0.263, pFDR 

= 0.048) and clustering coefficient (r = -0.270, pFDR = 0.048) for the average network. Neither antipsychotic 

medication nor age had a significant effect on central mean edge weight. However, age (r = -0.313, p = 0.012) 

and CPZ (r = -0.271, p = 0.033) showed a significant effect on non-central mean edge weight. There were no 

significant associations between network metrics and illness duration for any of the metrics (pFDR > 

0.05).  

 

IQ 

Regression coefficients between IQ and the average network graph theory metrics are shown in Table III. All 

metrics were significantly associated with IQ (r range 0.284 to 0.471). For central network, mean edge weight 

was significantly associated with IQ (r = 0.344, p = 0.010). For non-central network, mean edge weight was 

 Average 

Metric HC SZ pFDR 

Mean edge weight 0.44 ± 0.02  0.43 ± 0.02 0.08 

Density 33.15 ± 0.92 32.56 ± 1.25 0.04 

Strength 12.31 ± 0.57 11.88 ± 0.73 < 0.001 

Global efficiency 0.30  ± 0.01 0.30 ± 0.01 < 0.001 

Clustering coefficient 0.30  ± 0.01 0.30 ± 0.01 < 0.001 
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also significantly associated with IQ (r = 0.338, p = 0.014). Medication, as CPZ equivalents, did not show any 

significant effect in central, non-central and average networks. Scatterplots with the associations between 

metrics and IQ can be found in Supplementary material Figures 2 and 3. 

 

Table III: Correlation matrix for IQ and connectivity metrics for the average network. 

 

 

 

 

 

Note: Bold type indicates significant associations (pFDR < 0.05). 

 

 

Clinical symptoms 

Table IV shows the regression coefficients for positive, negative and total symptom scores and central, non-

central mean edge weight and average network connectivity metrics. Central network mean edge weight 

showed a tendency towards significance in relation to total symptoms (r = -0.348, p = 0.073). The addition of 

medication as a covariate in the model made the associations weaker and non-significant (p > 0.05). However, 

medication did not have any significant effect in the regression model. 

 

 
Table IV: Correlation matrix for PANSS and connectivity metrics for central (> 75% of centrality values), 

non-central and average networks. 

 

 

 

 

 

Note: This table shows the associations between symptoms and metrics using CPZ as a covariate.  

Metric r           pFDR 

Mean edge weight 0.343 0.016 

Density 0.284 0.045 

Strength 0.471 0.004 

Global efficiency 0.394 0.007 

Clustering coefficient 0.434 0.004 

 Metric Positive Negative Total 

 Central mean edge weight -0.282 -0.184 -0.348 

 Non-central mean edge weight -0.206 -0.163 -0.268 

A
v

e
ra

g
e
 

Mean edge weight -0.101 -0.118 -0.178 

Density -0.195 -0.041 -0.092 

Strength -0.201 -0.114 -0.193 

Global efficiency -0.132 -0.133 -0.195 

Clustering coefficient -0.114 -0.119 -0.178 
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Polygenic risk score 

The association between genetic risk score at a threshold of p ≤ 0.5 and case-control status in the total sample 

was significant (p < 0.05). The regression estimate of the genetic risk score at the threshold p ≤ 0.5 was 0.44 

(Adjusted R-square = 0.057; p = 0.029).  

Next, we studied the association between central and non-central mean edge weight and average 

network graph theory measures and PGRS. None of the connectivity metrics were significantly associated with 

PGRS across networks (pFDR > 0.05). Regression analysis between IQ and PGRS at a threshold of p ≤ 0.5 

showed a tendency towards significance (r = -0.742, p = 0.052). There were no significant correlation between 

PGRS and symptoms (pFDR > 0.05). 

 

Mediation analysis 

We aimed to identify mediation candidates that were consistent with the hypothesis that a greater genetic 

predisposition for schizophrenia is partly related to lower intelligence through the disruption of brain 

connectivity. As indicated by the bivariate association, the correlation between IQ and PGRS (r = -0.742, p = 

0.052) showed a tendency towards significance. The negative correlation between PGRS and IQ suggests a 

genetic liability to intelligence; mediation analysis allows us to quantify the role of topological network 

measures in this relationship. Given the substantial effect sizes, and the need to consider mediation in terms of 

zero and non-zero rather than using p-values in isolation (Hayes, 2009), we tested whether the direct effect of 

PGRS and IQ was significantly mediated by mean edge weight  and average network metrics (i.e. magnitude 

of change from path c to path c′; see Figure 2A). The results are shown in Figures 2B and 2C. A bias-corrected 

bootstrap confidence interval for the indirect effect based on 5000 bootstrap samples served as a formal 

statistical test of the degree to which mean edge weight mediated the relationship between PGRS and IQ. The 

30.52 % reduction in magnitude (β = -0.154 to β = -0.107) identified central mean edge weight as a significant 

partial mediator (confidence interval not containing zero; -0.363 to -0.055). For non-central mean edge weight 

(Figure 2C), the reduction in magnitude was 46.62% (β = -0.474 to β = -0.253) identifying also non-central 

mean edge weight as a significant partial mediator (confidence interval -0.673 to -0.050). The model was 

corrected for age and population stratification components. Additionally, Table V shows mediation results for 

the metrics of the average network. 
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Figure. 2. A) Schematic representation of relationships where an independent variable (X) and an outcome (Y) 

are hypothesised to be explained by a mediator (M). The direct effect of X on M is a, the effect of M on Y is 

b, and c the effect of X on Y. c′ denotes the effect of X on Y when M is taking into account in the model. B) 

Representation of the variables analysed in this study, where X= Polygenic risk score for schizophrenia (PGRS 

at p ≤ 0.5), Y= IQ and M= mean edge weight (central). C) X= Polygenic risk score for schizophrenia (PGRS 

at p ≤ 0.5), Y= IQ and M= mean edge weight (non-central). Asterisks represent statistically significant partial 

correlations. 

 

Table V: Mediation analysis for the average network 

 

      β % Mediation model 

X Y M c c' Attenuation F(df) 
Lower 
CI 

Upper 
CI 

PGRS IQ Mean edge weight -0.474 -0.253 46.62 8.20 (2, 43) -0.657 -0.048 

PGRS IQ Density -0.527 -0.168 62.76 4.63 (2, 43) -0.431 -0.002 

PGRS IQ Strength -0.288 -0.439 -52.43 14.20 (2, 43) -0.893 -0.142 

PGRS IQ Global efficiency -0.376 -0.348 7.44 9.85 (2, 43) -0.765 -0.117 

PGRS IQ Clustering coefficient -0.405 -0.326 19.50 10.66 (2, 43) -0.705 -0.090 

 

X: independent variable, Y: outcome variable, M: mediator, c: path from X to Y, c’: path from X to Y 

accounting for M. Bold type face indicates significant mediation effect (confidence intervals do not include 0; 

Preacher and Hayes, 2008). All tests of mediation are one-tailed and bias-corrected. Bold type face indicates 

significant mediation effect after FDR-correction (pFDR < 0.05) 
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Additional analyses: Network density 

Using network density as a covariate did not significantly affect the results of any of the regression models 

described above. 

 

Additional analyses: Thresholds 

Results for the different thresholds of centrality (25 and 50 %) showed that associations between intelligence, 

symptoms and mean edge weight were comparable across thresholds (data not shown). 

 

Additional analyses: Destrieux atlas  

Group differences using the Destrieux atlas (165 regions) as a parcellation scheme showed no significant 

differences between patients and controls for mean edge weight for both central and non-central mean edge 

weight (p > 0.05). Graph theory metric results from the average network showed larger differences between 

groups and stronger associations with intelligence. Results were in the expected direction. Nevertheless, 

analyses showed comparable results across both atlases for central and non-central mean edge weight and 

metrics from the average network (data not shown). 
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DISCUSSION 

This study was set out to assess the ability of graph theory metrics in schizophrenia to build a coherent model 

from brain structure, cognition and genetics. This is, to our knowledge, the first study reporting results for both 

high and low centrality networks in schizophrenia, and provides much-needed structural MRI perspective on 

links between brain connectivity and intelligence in this population. We sought to investigate the evolving 

hypothesis that schizophrenia is a hub disease in which central connections are more severely affected in 

contrast to non-central connections. Our data indicate that this may not be the case. Instead, schizophrenia may 

be a disorder characterised by the disruption of distributed brain regions affecting the whole brain, rather than 

exclusively affecting hubs. Our study supports the conceptualization of schizophrenia as a disorder 

characterised by impaired integration between brain regions rather than local brain abnormalities. 

The network analysis reported here shows that structural connectivity abnormalities are present in the 

schizophrenia patient group. Specifically, most graph theory metrics from the average network were 

significantly reduced in the patient sample compared with healthy controls. These results are consistent with 

previous findings (van den Heuvel & Fornito, 2014), in particular, density, strength, global efficiency and 

clustering coefficient were significantly reduced in the patient group compared with controls. The central 

subnetwork was principally composed of subcortical areas and regions located in the frontal and parietal lobes. 

Mean edge weight (FA) for central and non-central subnetworks, was not significantly different between 

patients and healthy controls. Taken together, these results suggest that in schizophrenia the structural 

connectome is characterised by weaker connections being less segregated and less integrated compared with 

healthy controls. Thus, here we have shown that differences between patients and controls can be found in the 

average network, suggesting the presence of more extensive impairments that are seemingly not limited to 

central connections. 

We also found that every graph theory metric across the different networks was significantly associated 

with IQ. These results are likely to reflect the integrative nature of intelligence, involving distributed brain 

networks that comprise a wide variety of cognitive functions (Colom, Karama, Jung, & Haier, 2010). The 

absence of an interaction between graph theory metrics and group indicates that the same effect occurs in 

healthy participants and schizophrenia patients. These results are consistent with those of Li et al. (2009) who 

reported that IQ was positively correlated with global efficiency and negatively with path length. Central and 
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non-central mean edge weight (FA) were positively associated with IQ, this is in accordance with numerous 

investigations assessing for instance, relationships between intelligence and general factors of FA (Alloza et 

al., 2016; Chiang et al., 2009; I. J. Deary et al., 2006; Penke et al., 2010; Yu et al., 2008). Thus, in this study 

we have been able to establish robust associations between intelligence and the structural connectome in 

schizophrenia. 

The dysconnection hypothesis proposes that altered topological connectivity and abnormal integration 

between distinct brain regions may underlie the symptomatology found in the disorder (Stephan et al., 2006, 

2009). In this study, none of the graph metrics were significantly associated with positive, negative or total 

symptoms. These results suggest that symptoms may be specifically based on deficiencies in distinctive 

networks. For instance, positive symptoms include hallucinations, delusions and thought disorders, while 

negative symptoms comprise blunted affect, alogia, anhedonia, asociality and avolition. These processes are 

likely to comprise distant and unique regions (i.e. visual hallucinations could be associated with visual 

processing) and therefore, may not be captured by an average network or by networks based on centrality. 

Thus far, a number of functional studies have investigated the effects of graph theory metrics on 

symptomatology (Bassett et al., 2012; Skudlarski et al., 2010). One study reported that higher levels of positive 

and negative symptoms were associated with reduced clustering coefficient and increased path lengths (Shim 

et al., 2014). A further study found that local connectome organization relates to longitudinal increases in 

overall PANSS, in particular, these associations were driven by clustering coefficient (Collin et al., 2016). 

Previous studies have found negative correlations between FA (using DTI) and positive, negative and total 

PANSS score (Michael et al., 2008; Skelly et al., 2008). For instance, negative correlations between FA and 

negative symptoms in specific white matter tracts, such as the corpus callosum, have been reported (Nakamura 

et al., 2012). However, the inconsistency of the findings may be the result of different methodological 

techniques, use of medication and heterogeneity of the disease.  

In the central and non-central subnetworks, comparable associations were found between intelligence 

and mean edge weights across all thresholds. Stronger associations were found for symptoms with non-central 

mean edge weight when considering the top 75% of network connections based on their centrality. A lower 

centrality threshold (25-50% central connections) showed weaker correlations; probably because of a reduced 

specificity of the subnetwork and exclusion of some important connections.  
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There is an overlap between the genetic risk factor for schizophrenia and intelligence (Glahn et al., 

2007; McIntosh et al., 2013; Toulopoulou et al., 2007) and thus, brain structure may be an intermediate 

phenotype between genetics and intelligence. In this study we have shown that central and non-central mean 

edge weight significantly mediated the relationship between genetics and intelligence between 30 and 47%, 

respectively. Moreover, every graph theory metric from the average network significantly mediated this 

relationship. Thus, we propose that structural brain topology measures are potential intermediate phenotypes 

in this model. Although metrics were not significantly associated with polygenic risk scores, statistical 

significance of all paths is not a pre-requisite to determining a mediation model (Hayes & Rockwood, 2016). 

The approach taken here detected moderate effect sizes and had the ability to formally quantify the degree and 

significance of the mediation. However, better-powered studies are needed to confirm this. 

These findings suggest that prominent associations and disruptions occur also in average and non-

central networks which are not driven by medication effects and are present across different brain parcellation 

schemes. We hypothesise that the construction of subnetworks in schizophrenia may be affected by its inherent 

reduced centrality and thus, central networks may include less central connections. This is in line with a recent 

publication where the authors propose that schizophrenia may not be entirely, nor specifically, a hub disease 

(Griffa et al., 2015). Based on previous literature and the limitation of our own study, we propose that 

schizophrenia is a disorder characterised by the disruption of distributed brain regions affecting the whole brain 

rather than hubs exclusively. Our study therefore supports the conceptualization of schizophrenia as a disorder 

characterised by impaired integration between brain regions rather than local brain abnormalities.  

 

Limitations 

Our findings are limited by the intrinsic nature of the methodology implemented. For example, limitations 

associated with DT-MRI, a technique that relies on water diffusion as an indirect marker for white matter 

microstructure which has not yet been able to resolve complex fibre architecture (Jones, Knösche, & Turner, 

2013), need to be acknowledged.  

Other limitations include the fact that most of the patients in this study used antipsychotic medication, 

which may affect structural brain connectivity (Szeszko et al., 2014). Nonetheless, it should be noted that 

impaired white matter connectivity has also been shown in never-medicated patients (Cheung et al., 2008; 
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Mandl et al., 2013). Additionally, the patients were recruited from outpatient clinics, thus generalisability of 

the results may be less applicable to more severely affected populations. Moreover, the sample size used is 

small by contemporary standards raising the possibility of Type II errors. Thus interpretations of our novel but 

preliminary results should be taken cautiously. To further validate the results presented here, replication of this 

study using larger datasets is needed.  
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