101 research outputs found

    Total posterior leg open wound management with free anterolateral thigh flap: case and literature review.

    Get PDF
    Soft tissue coverage of the exposed Achilles tendon is a unique reconstructive challenge. In this report, we describe the management of a large posterior leg wound with exposed Achilles tendon using a free anterolateral thigh (ALT) flap. A careful review of alternative reconstructive options is included, along with their respective advantages and disadvantages. A 32-year-old white man suffered a fulminant right lower extremity soft tissue infection requiring extensive debridement of the entire posterior surface of the right leg. The resulting large soft tissue defect included exposure of the Achilles tendon. Reconstruction of the defect was achieved with an ALT flap and split-thickness skin graft for coverage of the Achilles tendon and gastrocnemius muscle, respectively. The patient was able to ambulate independently within 2 months of the procedure

    Environmental drivers of population-level variation in the migratory and diving ontogeny of an Arctic top predator

    Get PDF
    This work is an output of the ARISE project (NE/P006035/1 and NE/P00623X/1), part of the Changing Arctic Ocean programme jointly funded by the UKRI Natural Environment Research Council (NERC) and the German Federal Ministry of Education and Research (BMBF). Fieldwork in Canada was carried out under a Canadian Council on Animal Care permit no. NAFC2017–2 and funded by Fisheries and Oceans Canada and a bursary from Department for Business, Energy and Industrial Strategy (BEIS) administered by the NERC Arctic Office. Fieldwork in the Greenland Sea was approved by the Greenland Ministry of Fisheries, Hunting and Agriculture and the Norwegian Food Safety Authority (permit no. 11546) as part of the Northeast Greenland Environmental Study Program 2017–2018 (by the Danish Centre for Environment and Energy at Aarhus University, The Greenland Institute of Natural Resources and the Environmental Agency for Mineral Resource Activities of the Government of Greenland) and financed by oil licence holders in the area.The development of migratory strategies that enable juveniles to survive to sexual maturity is critical for species that exploit seasonal niches. For animals that forage via breath-hold diving, this requires a combination of both physiological and foraging skill development. Here, we assess how migratory and dive behaviour develop over the first year of life for a migratory Arctic top predator, the harp seal Pagophilus groenlandicus, tracked using animal-borne satellite relay data loggers. We reveal similarities in migratory movements and differences in diving behaviour between 38 juveniles tracked from the Greenland Sea and Northwest Atlantic breeding populations. In both regions, periods of resident and transitory behaviour during migration were associated with proxies for food availability: sea ice concentration and bathymetric depth. However, while ontogenetic development of dive behaviour was similar for both populations of juveniles over the first 25 days, after this time Greenland Sea animals performed shorter and shallower dives and were more closely associated with sea ice than Northwest Atlantic animals. Together, these results highlight the role of both intrinsic and extrinsic factors in shaping early life behaviour. Variation in the environmental conditions experienced during early life may shape how different populations respond to the rapid changes occurring in the Arctic ocean ecosystem.Publisher PDFPeer reviewe

    Report of the NAMMCO-ICES Workshop on Seal Modelling (WKSEALS 2020)

    Get PDF
    To support sustainable management of apex predator populations, it is important to estimate population size and understand the drivers of population trends to anticipate the consequences of human decisions. Robust population models are needed, which must be based on realistic biological principles and validated with the best available data. A team of international experts reviewed age-structured models of North Atlantic pinniped populations, including Grey seal (Halichoerus grypus), Harp seal (Pagophilus groenlandicus), and Hooded seal (Cystophora cristata). Statistical methods used to fit such models to data were compared and contrasted. Differences in biological assumptions and model equations were driven by the data available from separate studies, including observation methodology and pre-processing. Counts of pups during the breeding season were used in all models, with additional counts of adults and juveniles available in some. The regularity and frequency of data collection, including survey counts and vital rate estimates, varied. Important differences between the models concerned the nature and causes of variation in vital rates (age-dependent survival and fecundity). Parameterisation of age at maturity was detailed and time-dependent in some models and simplified in others. Methods for estimation of model parameters were reviewed and compared. They included Bayesian and maximum likelihood (ML) approaches, implemented via bespoke coding in C, C++, TMB or JAGS. Comparative model runs suggested that as expected, ML-based implementations were rapid and computationally efficient, while Bayesian approaches, which used MCMC or sequential importance sampling, required longer for inference. For grey seal populations in the Netherlands, where preliminary ML-based TMB results were compared with the outputs of a Bayesian JAGS implementation, some differences in parameter estimates were apparent. For these seal populations, further investigations are recommended to explore differences that might result from the modelling framework and model-fitting methodology, and their importance for inference and management advice. The group recommended building on the success of this workshop via continued collaboration with ICES and NAMMCO assessment groups, as well as other experts in the marine mammal modelling community. Specifically, for Northeast Atlantic harp and hooded seal populations, the workshop represents the initial step towards a full ICES benchmark process aimed at revising and evaluating new assessment models.Publisher PDFPeer reviewe

    LSST: from Science Drivers to Reference Design and Anticipated Data Products

    Get PDF
    (Abridged) We describe here the most ambitious survey currently planned in the optical, the Large Synoptic Survey Telescope (LSST). A vast array of science will be enabled by a single wide-deep-fast sky survey, and LSST will have unique survey capability in the faint time domain. The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the Solar System, exploring the transient optical sky, and mapping the Milky Way. LSST will be a wide-field ground-based system sited at Cerro Pach\'{o}n in northern Chile. The telescope will have an 8.4 m (6.5 m effective) primary mirror, a 9.6 deg2^2 field of view, and a 3.2 Gigapixel camera. The standard observing sequence will consist of pairs of 15-second exposures in a given field, with two such visits in each pointing in a given night. With these repeats, the LSST system is capable of imaging about 10,000 square degrees of sky in a single filter in three nights. The typical 5σ\sigma point-source depth in a single visit in rr will be 24.5\sim 24.5 (AB). The project is in the construction phase and will begin regular survey operations by 2022. The survey area will be contained within 30,000 deg2^2 with δ<+34.5\delta<+34.5^\circ, and will be imaged multiple times in six bands, ugrizyugrizy, covering the wavelength range 320--1050 nm. About 90\% of the observing time will be devoted to a deep-wide-fast survey mode which will uniformly observe a 18,000 deg2^2 region about 800 times (summed over all six bands) during the anticipated 10 years of operations, and yield a coadded map to r27.5r\sim27.5. The remaining 10\% of the observing time will be allocated to projects such as a Very Deep and Fast time domain survey. The goal is to make LSST data products, including a relational database of about 32 trillion observations of 40 billion objects, available to the public and scientists around the world.Comment: 57 pages, 32 color figures, version with high-resolution figures available from https://www.lsst.org/overvie

    Role of Factor VII in Correcting Dilutional Coagulopathy and Reducing Re-operations for Bleeding Following Non-traumatic Major Gastrointestinal and Abdominal Surgery

    Get PDF
    Objective The objective of this study is to evaluate the effectiveness of rfVIIa in reducing blood product requirements and re-operation for postoperative bleeding after major abdominal surgery. Background Hemorrhage is a significant complication after major gastrointestinal and abdominal surgery. Clinically significant bleeding can lead to shock, transfusion of blood products, and re-operation. Recent reports suggest that activated rfVIIa may be effective in correcting coagulopathy and decreasing the need for re-operation. Methods This study was a retrospective review over a 4-year period of 17 consecutive bleeding postoperative patients who received rfVIIa to control hemorrhage and avoid re-operation. Outcome measures were blood and clotting factor transfusions, deaths, thromboembolic complications, and number of re-operations for bleeding. Results Seventeen patients with postoperative hemorrhage following major abdominal gastrointestinal surgery (nine pancreas, four sarcoma, two gastric, one carcinoid, and one fistula) were treated with rfVIIa. In these 17 patients, rfVIIa was administered for 18 episodes of bleeding (dose 2,400-9,600 mcg, 29.8-100.8 mcg/kg). Transfusion requirement of pRBC and FFP were each significantly less than pre-rfVIIa. Out of the 18 episodes, bleeding was controlled in 17 (94%) without surgery, and only one patient returned to the operating room for hemorrhage. There were no deaths and two thrombotic complications. Coagulopathy was corrected by rfVIIa from 1.37 to 0.96 (p&lt;0.0001). Conclusion Use of rfVIIa in resuscitation for hemorrhage after non-traumatic major abdominal and gastrointestinal surgery can correct dilutional coagulopathy, reducing blood product requirements and need for re-operation

    The Detectability of Earth's Biosignatures Across Time

    Full text link
    Over the past two decades, enormous advances in the detection of exoplanets have taken place. Currently, we have discovered hundreds of earth-sized planets, several of them within the habitable zone of their star. In the coming years, the efforts will concentrate in the characterization of these planets and their atmospheres to try to detect the presence of biosignatures. However, even if we discovered a second Earth, it is very unlikely that it would present a stage of evolution similar to the present-day Earth. Our planet has been far from static since its formation about 4.5 Ga ago; on the contrary, during this time, it has undergone multiple changes in it's atmospheric composition, it's temperature structure, it's continental distribution, and even changes in the forms of life that inhabit it. All these changes have affected the global properties of Earth as seen from an astronomical distance. Thus, it is of interest not only to characterize the observables of the Earth as it is today, but also at different epochs. Here we review the detectability of the Earth's globally-averaged properties over time. This includes atmospheric composition and biosignatures, and surface properties that can be interpreted as sings of habitability (bioclues). The resulting picture is that truly unambiguous biosignatures are only detectable for about 1/4 of the Earth's history. The rest of the time we rely on detectable bioclues that can only establish an statistical likelihood for the presence of life on a given planet.Comment: To appear in "Handbook of Exoplanets", eds. Deeg, H.J. & Belmonte, J.A, Springer (2018). arXiv admin note: text overlap with arXiv:astro-ph/0609398 by other author

    Trace elements at the intersection of marine biological and geochemical evolution

    Get PDF
    Life requires a wide variety of bioessential trace elements to act as structural components and reactive centers in metalloenzymes. These requirements differ between organisms and have evolved over geological time, likely guided in some part by environmental conditions. Until recently, most of what was understood regarding trace element concentrations in the Precambrian oceans was inferred by extrapolation, geochemical modeling, and/or genomic studies. However, in the past decade, the increasing availability of trace element and isotopic data for sedimentary rocks of all ages has yielded new, and potentially more direct, insights into secular changes in seawater composition – and ultimately the evolution of the marine biosphere. Compiled records of many bioessential trace elements (including Ni, Mo, P, Zn, Co, Cr, Se, and I) provide new insight into how trace element abundance in Earth's ancient oceans may have been linked to biological evolution. Several of these trace elements display redox-sensitive behavior, while others are redox-sensitive but not bioessential (e.g., Cr, U). Their temporal trends in sedimentary archives provide useful constraints on changes in atmosphere-ocean redox conditions that are linked to biological evolution, for example, the activity of oxygen-producing, photosynthetic cyanobacteria. In this review, we summarize available Precambrian trace element proxy data, and discuss how temporal trends in the seawater concentrations of specific trace elements may be linked to the evolution of both simple and complex life. We also examine several biologically relevant and/or redox-sensitive trace elements that have yet to be fully examined in the sedimentary rock record (e.g., Cu, Cd, W) and suggest several directions for future studies

    Earth: Atmospheric Evolution of a Habitable Planet

    Full text link
    Our present-day atmosphere is often used as an analog for potentially habitable exoplanets, but Earth's atmosphere has changed dramatically throughout its 4.5 billion year history. For example, molecular oxygen is abundant in the atmosphere today but was absent on the early Earth. Meanwhile, the physical and chemical evolution of Earth's atmosphere has also resulted in major swings in surface temperature, at times resulting in extreme glaciation or warm greenhouse climates. Despite this dynamic and occasionally dramatic history, the Earth has been persistently habitable--and, in fact, inhabited--for roughly 4 billion years. Understanding Earth's momentous changes and its enduring habitability is essential as a guide to the diversity of habitable planetary environments that may exist beyond our solar system and for ultimately recognizing spectroscopic fingerprints of life elsewhere in the Universe. Here, we review long-term trends in the composition of Earth's atmosphere as it relates to both planetary habitability and inhabitation. We focus on gases that may serve as habitability markers (CO2, N2) or biosignatures (CH4, O2), especially as related to the redox evolution of the atmosphere and the coupled evolution of Earth's climate system. We emphasize that in the search for Earth-like planets we must be mindful that the example provided by the modern atmosphere merely represents a single snapshot of Earth's long-term evolution. In exploring the many former states of our own planet, we emphasize Earth's atmospheric evolution during the Archean, Proterozoic, and Phanerozoic eons, but we conclude with a brief discussion of potential atmospheric trajectories into the distant future, many millions to billions of years from now. All of these 'Alternative Earth' scenarios provide insight to the potential diversity of Earth-like, habitable, and inhabited worlds.Comment: 34 pages, 4 figures, 4 tables. Review chapter to appear in Handbook of Exoplanet
    corecore