2,149 research outputs found

    Job Growth in Early Transition: Comparing Two Paths

    Full text link
    Small start-up firms are the engine of job creation in early transition and yet little is known about the characteristics of this new sector. We seek to identify patterns of job growth in this sector in terms of niches left from central planning and ask about differences in job creation across two different transition economies: Estonia, which experienced rapid destruction of the pre-existing firms, and the Czech Republic, which reduced the old sector gradually. We find job growth within industries to be quantitatively more important than job growth due to across-industry reallocation. Furthermore, the industrial composition of startups is strikingly similar in the two countries. We offer convergence to "western" industry firm-size distributions as an explanation. We also find regularities in wage evolution across new and old firms, including small differences in job quality across the two transition paths.http://deepblue.lib.umich.edu/bitstream/2027.42/39888/3/wp503.pd

    An early cretaceous subduction-modified mantle underneath the ultraslow spreading Gakkel Ridge, Arctic Ocean

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Richter, M., Nebel, O., Maas, R., Mather, B., Nebel-Jacobsen, Y., Capitanio, F. A., Dick, H. J. B., & Cawood, P. A. An early cretaceous subduction-modified mantle underneath the ultraslow spreading Gakkel Ridge, Arctic Ocean. Science Advances, 6(44), (2020): eabb4340, doi:10.1126/sciadv.abb4340.Earth’s upper mantle, as sampled by mid-ocean ridge basalts (MORBs) at oceanic spreading centers, has developed chemical and isotopic heterogeneity over billions of years through focused melt extraction and re-enrichment by recycled crustal components. Chemical and isotopic heterogeneity of MORB is dwarfed by the large compositional spectrum of lavas at convergent margins, identifying subduction zones as the major site for crustal recycling into and modification of the mantle. The fate of subduction-modified mantle and if this heterogeneity transmits into MORB chemistry remains elusive. Here, we investigate the origin of upper mantle chemical heterogeneity underneath the Western Gakkel Ridge region in the Arctic Ocean through MORB geochemistry and tectonic plate reconstruction. We find that seafloor lavas from the Western Gakkel Ridge region mirror geochemical signatures of an Early Cretaceous, paleo-subduction zone, and conclude that the upper mantle can preserve a long-lived, stationary geochemical memory of past geodynamic processes.O.N. was supported by the Australian Research Council (grant FT140101062). P.A.C. was supported by the Australian Research Council (grant FL160100168). H.J.B.D. was supported by the NSF (grants PLR 9912162, PLR 0327591, OCE 0930487, and OCE 1434452). M.R. was supported by a graduate scholarship of Monash University and the SEAE

    Invariance of the Local Segmental Relaxation Dispersion in Polycyclohexylmethacrylate / Poly-alpha-Methylstyrene Blends

    Full text link
    Dielectric spectroscopy was carried out on polycyclohexylmethacrylate (PCHMA) and its blend with poly-alpha-methylstyrene (PaMS) as a function of temperature and pressure. When measured at conditions whereby the local segmental relaxation time for the PCHMA was constant, the dispersion in the loss spectra had a fixed shape; that is, the relaxation time determines the breadth of the relaxation time distribution, independently of T and P. This result is known for neat materials and could be observed for the blend herein due to the nonpolar character of the PaMS and the degree of thermodynamic miscibility of the blend.Comment: 13 pages 5 figure

    Cytosolic monothiol glutaredoxins function in intracellular iron sensing and trafficking via their bound iron-sulfur cluster

    Get PDF
    Iron is an essential nutrient for cells. It is unknown how iron, after its import into the cytosol, is specifically delivered to iron-dependent processes in various cellular compartments. Here, we identify an essential function of the conserved cytosolic monothiol glutaredoxins Grx3 and Grx4 in intracellular iron trafficking and sensing. Depletion of Grx3/4 specifically impaired all iron-requiring reactions in the cytosol, mitochondria, and nucleus, including the synthesis of Fe/S clusters, heme, and di-iron centers. These defects were caused by impairment of iron insertion into proteins and iron transfer to mitochondria, indicating that intracellular iron is not bioavailable, despite highly elevated cytosolic levels. The crucial task of Grx3/4 is mediated by a bridging, glutathione-containing Fe/S center that functions both as an iron sensor and in intracellular iron delivery. Collectively, our study uncovers an important role of monothiol glutaredoxins in cellular iron metabolism, with a surprising connection to cellular redox and sulfur metabolisms

    Drought history affects grassland plant and microbial carbon turnover during and after a subsequent drought event

    Get PDF
    Drought periods are projected to become more severe and more frequent in many European regions. While effects of single strong droughts on plant and microbial carbon (C) dynamics have been studied in some detail, impacts of recurrent drought events are still little understood. We tested whether the legacy of extreme experimental drought affects responses of plant and microbial C and nitrogen (N) turnover to further drought and rewetting. In a mountain grassland, we conducted a 13C pulse-chase experiment during a naturally occurring drought and rewetting event in plots previously exposed to experimental droughts and in ambient controls (AC). After labelling, we traced 13C below-ground allocation and incorporation into soil microbes using phospholipid fatty acid biomarkers. Drought history (DH) had no effects on the standing shoot and fine root plant biomass. However, plants with experimental DH displayed decreased shoot N concentrations and increased fine root N concentrations relative to those in AC. During the natural drought, plants with DH assimilated and allocated less 13C below-ground; moreover, fine root respiration was reduced and not fuelled by fresh C compared to plants in AC. Regardless of DH, microbial biomass remained stable during natural drought and rewetting. Although microbial communities initially differed in their composition between soils with and without DH, they responded to the natural drought and rewetting in a similar way: gram-positive bacteria increased, while fungal and gram-negative bacteria remained stable. In soils with DH, a strongly reduced uptake of recent plant-derived 13C in microbial biomarkers was observed during the natural drought, pointing to a smaller fraction of active microbes or to a microbial community that is less dependent on plant C. Synthesis. Drought history can induce changes in above- vs. below-ground plant N concentrations and affect the response of plant C turnover to further droughts and rewetting by decreasing plant C uptake and below-ground allocation. DH does not affect the responses of the microbial community to further droughts and rewetting, but alters microbial functioning, particularly the turnover of recent plant-derived carbon, during and after further drought periods. © 2016 The Authors. Journal of Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Societ

    Dietary α-linolenic acid diminishes experimental atherogenesis and restricts T cell-driven inflammation

    Get PDF
    Aims Epidemiological studies report an inverse association between plant-derived dietary α-linolenic acid (ALA) and cardiovascular events. However, little is known about the mechanism of this protection. We assessed the cellular and molecular mechanisms of dietary ALA (flaxseed) on atherosclerosis in a mouse model. Methods and results Eight-week-old male apolipoprotein E knockout (ApoE−/−) mice were fed a 0.21 % (w/w) cholesterol diet for 16 weeks containing either a high ALA [7.3 % (w/w); n = 10] or low ALA content [0.03 % (w/w); n = 10]. Bioavailability, chain elongation, and fatty acid metabolism were measured by gas chromatography of tissue lysates and urine. Plaques were assessed using immunohistochemistry. T cell proliferation was investigated in primary murine CD3-positive lymphocytes. T cell differentiation and activation was assessed by expression analyses of interferon-γ, interleukin-4, and tumour necrosis factor α (TNFα) using quantitative PCR and ELISA. Dietary ALA increased aortic tissue levels of ALA as well as of the n−3 long chain fatty acids (LC n−3 FA) eicosapentaenoic acid, docosapentaenoic acid, and docosahexaenoic acid. The high ALA diet reduced plaque area by 50% and decreased plaque T cell content as well as expression of vascular cell adhesion molecule-1 and TNFα. Both dietary ALA and direct ALA exposure restricted T cell proliferation, differentiation, and inflammatory activity. Dietary ALA shifted prostaglandin and isoprostane formation towards 3-series compounds, potentially contributing to the atheroprotective effects of ALA. Conclusion Dietary ALA diminishes experimental atherogenesis and restricts T cell-driven inflammation, thus providing the proof-of-principle that plant-derived ALA may provide a valuable alternative to marine LC n−3 F

    Measurement of the cross-section and charge asymmetry of WW bosons produced in proton-proton collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector

    Get PDF
    This paper presents measurements of the W+μ+νW^+ \rightarrow \mu^+\nu and WμνW^- \rightarrow \mu^-\nu cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables, submitted to EPJC. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13

    Search for chargino-neutralino production with mass splittings near the electroweak scale in three-lepton final states in √s=13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for supersymmetry through the pair production of electroweakinos with mass splittings near the electroweak scale and decaying via on-shell W and Z bosons is presented for a three-lepton final state. The analyzed proton-proton collision data taken at a center-of-mass energy of √s=13  TeV were collected between 2015 and 2018 by the ATLAS experiment at the Large Hadron Collider, corresponding to an integrated luminosity of 139  fb−1. A search, emulating the recursive jigsaw reconstruction technique with easily reproducible laboratory-frame variables, is performed. The two excesses observed in the 2015–2016 data recursive jigsaw analysis in the low-mass three-lepton phase space are reproduced. Results with the full data set are in agreement with the Standard Model expectations. They are interpreted to set exclusion limits at the 95% confidence level on simplified models of chargino-neutralino pair production for masses up to 345 GeV
    corecore