13 research outputs found

    All-sky search for gravitational-wave bursts in the second joint LIGO-Virgo run

    Get PDF
    We present results from a search for gravitational-wave bursts in the data collected by the LIGO and Virgo detectors between July 7, 2009 and October 20, 2010: data are analyzed when at least two of the three LIGO-Virgo detectors are in coincident operation, with a total observation time of 207 days. The analysis searches for transients of duration < 1 s over the frequency band 64-5000 Hz, without other assumptions on the signal waveform, polarization, direction or occurrence time. All identified events are consistent with the expected accidental background. We set frequentist upper limits on the rate of gravitational-wave bursts by combining this search with the previous LIGO-Virgo search on the data collected between November 2005 and October 2007. The upper limit on the rate of strong gravitational-wave bursts at the Earth is 1.3 events per year at 90% confidence. We also present upper limits on source rate density per year and Mpc^3 for sample populations of standard-candle sources. As in the previous joint run, typical sensitivities of the search in terms of the root-sum-squared strain amplitude for these waveforms lie in the range 5 10^-22 Hz^-1/2 to 1 10^-20 Hz^-1/2. The combination of the two joint runs entails the most sensitive all-sky search for generic gravitational-wave bursts and synthesizes the results achieved by the initial generation of interferometric detectors.Comment: 15 pages, 7 figures: data for plots and archived public version at https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=70814&version=19, see also the public announcement at http://www.ligo.org/science/Publication-S6BurstAllSky

    Cortical processing of a brightness illusion

    No full text
    Several brightness illusions indicate that borders can affect the perception of surfaces dramatically. In the Cornsweet illusion, two equiluminant surfaces appear to be different in brightness because of the contrast border between them. Here, we report the existence of cells in monkey visual cortex that respond to such an “illusory” brightness. We find that luminance responsive cells are located in color-activated regions (cytochrome oxidase blobs and bridges) of primary visual cortex (V1), whereas Cornsweet responsive cells are found preferentially in the color-activated regions (thin stripes) of second visual area (V2). This colocalization of brightness and color processing within V1 and V2 suggests a segregation of contour and surface processing in early visual pathways and a hierarchy of brightness information processing from V1 to V2 in monkeys

    The Organization of Orientation-Selective, Luminance-Change and Binocular- Preference Domains in the Second (V2) and Third (V3) Visual Areas of New World Owl Monkeys as Revealed by Intrinsic Signal Optical Imaging

    No full text
    Optical imaging was used to map patterns of visually evoked activation in the second (V2) and third (V3) visual areas of owl monkeys. Modular patterns of activation were produced in response to stimulation with oriented gratings, binocular versus monocular stimulation, and stimuli containing wide-field luminance changes. In V2, luminance-change domains tended to lie between domains selective for orientation. Regions preferentially activated by binocular stimulation co-registered with orientation-selective domains. Co-alignment of images with cytochrome oxidase (CO)–processed sections revealed functional correlates of 2 types of CO-dense regions in V2. Orientation-responsive domains and binocular domains were correlated with the locations of CO-thick stripes, and luminance-change domains were correlated with the locations of CO-thin stripes. In V3, orientation preference, luminance-change, and binocular preference domains were observed, but were more irregularly arranged than those in V2. Our data suggest that in owl monkey V2, consistent with that in macaque monkeys, modules for processing contours and binocularity exist in one type of compartment and that modules related to processing-surface features exist within a separate type of compartment

    Sparse EEG/MEG source estimation via a group lasso

    Get PDF
    This work was supported by EY018875, National Institutes of Health; EY015790, National Institutes of Health; DMS-1007719, National Science Foundation; and RO1-EB001988-15, National Institutes of Health.Non-invasive recordings of human brain activity through electroencephalography (EEG) or magnetoencelphalography (MEG) are of value for both basic science and clinical applications in sensory, cognitive, and affective neuroscience. Here we introduce a new approach to estimating the intra-cranial sources of EEG/MEG activity measured from extra-cranial sensors. The approach is based on the group lasso, a sparse-prior inverse that has been adapted to take advantage of functionally-defined regions of interest for the definition of physiologically meaningful groups within a functionally-based common space. Detailed simulations using realistic source-geometries and data from a human Visual Evoked Potential experiment demonstrate that the group-lasso method has improved performance over traditional ℓ2 minimum-norm methods. In addition, we show that pooling source estimates across subjects over functionally defined regions of interest results in improvements in the accuracy of source estimates for both the group-lasso and minimum-norm approaches.Publisher PDFPeer reviewe

    Search for gravitational waves from binary black hole inspiral, merger, and ringdown

    Get PDF
    We present the first modeled search for gravitational waves using the complete binary black-hole gravitational waveform from inspiral through the merger and ringdown for binaries with negligible component spin. We searched approximately 2 years of LIGO data, taken between November 2005 and September 2007, for systems with component masses of 1–99M⊙ and total masses of 25–100M⊙. We did not detect any plausible gravitational-wave signals but we do place upper limits on the merger rate of binary black holes as a function of the component masses in this range. We constrain the rate of mergers for 19M⊙≀m1, m2≀28M⊙ binary black-hole systems with negligible spin to be no more than 2.0  Mpc−3 Myr−1 at 90% confidence
    corecore