544 research outputs found

    Physics of spotless mode of current transfer to cathodes of metal vapor arcs

    Get PDF
    A fresh attempt is made to clarify the physics of the diffuse, or spotless, mode of current transfer that may occur on cathodes of vacuum arcs if the average cathode surface temper ature is high enough, about 2000 K. It is shown that in the case of chromium cathode the usual mechanism of current transfer to arc cathodes cannot sustain current densities of the order of 105–106 A · m−2 observed in the experiment, the reason being that the electrical power deposited into electron gas in the near cathode space-charge sheath is insufficient. It is hypothesized that the electrical power is supplied to the electron gas primarily in the bulk plasma, rather than in the sheath, and a high level of electron energy in the vicinity of the sheath edge is sustained by electron heat conduction from the bulk plasma. Estimates of the current of ions diffusing to the sheath edge from the quasi neutral plasma gave values comparable with the experimental current density, which supports the above hypothesis. On the contrary, the spotless attachment of vacuum arcs to gadolinium cathodes may be interpreted as a manifestation of the usual mechanism of current transfer to arc cathodes. Results given for gadolinium cathodes by a model of near-cathode layers in vacuum arcs conform to available experimental information.info:eu-repo/semantics/publishedVersio

    Risk factors at early stages of ontogenesis in early comprehensive prophylaxis for speech and intellectual developmental disorders

    Get PDF
    The main idea of the program is to justify immediate measures to organize early medico-psycho-pedagogical comprehensive prophylaxis based on profound multilateral dynamic interaction between various specialists and -depth analysis of all potential risks: organic, emotional, psychological and social ones specific for the ontogenetic development starting with the prenatal stage.В статье представлена программа ранней комплексной профилактики нарушений развития речи и интеллекта

    The double sheath on cathodes of discharges burning in cathode vapour

    Get PDF
    The model of a collisionless near-cathode space-charge sheath with ionization of atoms emitted by the cathode surface is considered. Numerical calculations showed that the mathematical problem is solvable and its solution is unique. In the framework of this model, the sheath represents a double layer with a potential maximum, with the ions which are produced before the maximum returning to the cathode surface and those produced after the maximum escaping into the plasma. Numerical results are given in a form to be readily applicable in analysis of discharges burning in cathode vapour, such as vacuum arcs. In particular, the results indicate that the ion backflow coefficient in such discharges exceeds 0.5, in agreement with values extracted from the experiment.info:eu-repo/semantics/publishedVersio

    Field to thermo-field to thermionic electron emission: a practical guide to evaluation and electron emission from arc cathodes

    Get PDF
    This work is concerned with devising a method of evaluation of electron emission in the framework of the Murphy-Good theory, which would be as simple and computationally efficient as possible while being accurate in the full range of conditions of validity of the theory. The method relies on Pad e approximants. A comparative study of electron emission from cathodes of arcs in ambient gas and vacuum arcs is performed with the use of this method. Electron emission from cathodes of arcs in ambient gas is of thermionic nature even for extremely high gas pressures characteristic of projection and automotive arc lamps and is adequately described by the Richardson-Schottky formula. The electron emission from vaporizing (hot) cathodes of vacuum arcs is of thermo-field nature and is adequately described by the Hantzsche fit formula. Since no analytical formulas are uniformly valid for field to thermo-field to thermionic emission, a numerical evaluation of the Murphy-Good formalism is inevitable in cases where a unified description of the full range of conditions is needed, as is the general case of plasma-cathode interaction in vacuum arcs, and the technique proposed in this work may be the method of choice to this end.info:eu-repo/semantics/publishedVersio

    Sheath and arc-column voltages in high-pressure arc discharges

    Get PDF
    Electrical characteristics of a 1 cm-long free-burning atmospheric-pressure argon arc are calculated by means of a model taking into account the existence of a near-cathode space-charge sheath and the discrepancy between the electron and heavy-particle temperatures in the arc column. The computed arc voltage exhibits a variation with the arc current I similar to the one revealed by the experiment and exceeds experimental values by no more than approximately 2 V in the current range 20–175 A. The sheath contributes about two-thirds or more of the arc voltage. The LTE model predicts a different variation of the arc voltage with I and underestimates the experimental values appreciably for low currents but by no more than approximately 2 V for I 120 A. However, the latter can hardly be considered as a proof of unimportance of the space-charge sheath at high currents: the LTE model overestimates both the resistance of the bulk of the arc column and the resistance of the part of the column that is adjacent to the cathode, and this overestimation to a certain extent compensates for the neglect of the voltage drop in the sheath. Furthermore, if the latter resistance were evaluated in the framework of the LTE model in an accurate way, then the overestimation would be still much stronger and the obtained voltage would significantly exceed those observed in the experiment.info:eu-repo/semantics/publishedVersio

    Revisiting theoretical description of the retrograde motion of cathode spots of vacuum arcs

    Get PDF
    A fresh attempt to develop a self-consistent descrip tion of the retrograde motion of cathode spots on volatile cathodes is undertaken. Three potential mechanisms of effect of transversal magnetic field on the distribution of parameters in the spot are studied: the effect of magnetic field on hydrodynamics processes in the spot, in particular, on the formation of liquid-metal jet and the droplet detachment, and the effect of transversal magnetic field over the motion of ions and emitted electrons in the near-cathode space-charge sheath. It is found that for typical conditions of cathode spots in vacuum arcs the effect of magnetic field over the formation of liquid-metal jet and the droplet detachment is negligible; the motion of the ions in the near-cathode space-charge sheath is not disturbed; and the motion of the emitted electrons is disturbed only marginally. Thus, the above-mentioned potential mechanisms are hardly relevant and the first-principle understanding is still missing. A phenomenological description of the retrograde motion is developed as an alternative. The description employs general considerations without relying on specific assumptions and the (only) unknown parameter can be determined from comparison with the experiment.info:eu-repo/semantics/publishedVersio

    Numerical investigation of AC arc ignition on cold electrodes in atmospheric-pressure argon

    Get PDF
    Since experiments cannot clarify the mechanism of current transfer to non-thermionic arc cathodes, this can only be done by means of numerical modelling based on first principles and not relying on a priori assumptions. In this work, the first quarter-period after the ignition of an AC arc on cold electrodes in atmospheric-pressure argon is investigated by means of unified one-dimensional modelling, where the conservation and transport equations for all plasma species, the electron and heavy-particle energy equations, and the Poisson equation are solved in the whole interelectrode gap up to the electrode surfaces. Results are compared with those for DC discharges and analysed with the aim to clarify the role of different mechanisms of current transfer to non-thermionic arc cathodes. It is found that the glow-to-arc transition in the AC case occurs in a way substantially different from the quasi-stationary glow-to-arc transition. The dominant mechanisms of current transfer to the cathode during the AC arc ignition on cold electrodes are, subsequently, the displacement current, the ion current, and thermionic emission current. No indications of explosive emission are found. Electron emission from the impact of excited atoms can hardly be a dominant mechanism either. The introduction of the so-called field enhancement factor, which is used for description of field electron emission from cold cathodes in a vacuum, leads to computed cathode surface temperature values that are appreciably lower than the melting temperature of tungsten even in the quasi-stationary case. This means that pure tungsten cathodes of atmospheric-pressure argon arcs can operate without melting, in contradiction with experiments.info:eu-repo/semantics/publishedVersio

    Amyloid beta oligomers induce neuronal elasticity changes in age-dependent manner: a force spectroscopy study on living hippocampal neurons

    Get PDF
    Small soluble species of amyloid-beta (Aβ) formed during early peptide aggregation stages are responsible for several neurotoxic mechanisms relevant to the pathology of Alzheimer's disease (AD), although their interaction with the neuronal membrane is not completely understood. This study quantifies the changes in the neuronal membrane elasticity induced by treatment with the two most common Aβ isoforms found in AD brains: Aβ40 and Aβ42. Using quantitative atomic force microscopy (AFM), we measured for the first time the static elastic modulus of living primary hippocampal neurons treated with pre-aggregated Aβ40 and Aβ42 soluble species. Our AFM results demonstrate changes in the elasticity of young, mature and aged neurons treated for a short time with the two Aβ species pre-aggregated for 2 hours. Neurons aging under stress conditions, showing aging hallmarks, are the most susceptible to amyloid binding and show the largest decrease in membrane stiffness upon Aβ treatment. Membrane stiffness defines the way in which cells respond to mechanical forces in their environment and has been shown to be important for processes such as gene expression, ion-channel gating and neurotransmitter vesicle transport. Thus, one can expect that changes in neuronal membrane elasticity might directly induce functional changes related to neurodegeneration

    A high-content neuron imaging assay demonstrates inhibition of prion disease-associated neurotoxicity by an anti-prion protein antibody

    Get PDF
    There is an urgent need to develop disease-modifying therapies to treat neurodegenerative diseases which pose increasing challenges to global healthcare systems. Prion diseases, although rare, provide a paradigm to study neurodegenerative dementias as similar disease mechanisms involving propagation and spread of multichain assemblies of misfolded protein ("prion-like" mechanisms) are increasingly recognised in the commoner conditions such as Alzheimer's disease. However, studies of prion disease pathogenesis in mouse models showed that prion propagation and neurotoxicity can be mechanistically uncoupled and in vitro assays confirmed that highly purified prions are indeed not directly neurotoxic. To aid development of prion disease therapeutics we have therefore developed a cell-based assay for the specific neurotoxicity seen in prion diseases rather than to simply assess inhibition of prion propagation. We applied this assay to examine an anti-prion protein mouse monoclonal antibody (ICSM18) known to potently cure prion-infected cells and to delay onset of prion disease in prion-infected mice. We demonstrate that whilst ICSM18 itself lacks inherent neurotoxicity in this assay, it potently blocks prion disease-associated neurotoxicity

    Amyloid β oligomers disrupt blood-CSF barrier integrity by activating matrix metalloproteinases

    Get PDF
    The blood-CSF barrier (BCSFB) consists of a monolayer of choroid plexus epithelial (CPE) cells that maintain CNS homeostasis by producing CSF and restricting the passage of undesirable molecules and pathogens into the brain. Alzheimer's disease is the most common progressive neurodegenerative disorder and is characterized by the presence of amyloid beta (A beta) plaques and neurofibrillary tangles in the brain. Recent research shows that Alzheimer's disease is associated with morphological changes in CPE cells and compromised production of CSF. Here, we studied the direct effects of A beta on the functionality of the BCSFB. Intracerebroventricular injection of A beta 1-42 oligomers into the cerebral ventricles of mice, a validated Alzheimer's disease model, caused induction of a cascade of detrimental events, including increased inflammatory gene expression in CPE cells and increased levels of proinflammatory cytokines and chemokines in the CSF. It also rapidly affected CPE cell morphology and tight junction protein levels. These changes were associated with loss of BCSFB integrity, as shown by an increase in BCSFB leakage. A beta 1-42 oligomers also increased matrix metalloproteinase (MMP) gene expression in the CPE and its activity in CSF. Interestingly, BCSFB disruption induced by A beta 1-42 oligomers did not occur in the presence of a broad-spectrum MMP inhibitor or in MMP3-deficient mice. These data provide evidence that MMPs are essential for the BCSFB leakage induced by A beta 1-42 oligomers. Our results reveal that Alzheimer's disease-associated soluble A beta 1-42 oligomers induce BCSFB dysfunction and suggest MMPs as a possible therapeutic target
    corecore