1,997 research outputs found

    Models of atypical development must also be models of normal development

    Get PDF
    Functional magnetic resonance imaging studies of developmental disorders and normal cognition that include children are becoming increasingly common and represent part of a newly expanding field of developmental cognitive neuroscience. These studies have illustrated the importance of the process of development in understanding brain mechanisms underlying cognition and including children ill the study of the etiology of developmental disorders

    Metaphor as categorisation: a connectionist implementation

    Get PDF
    A key issue for models of metaphor comprehension is to explain how in some metaphorical comparison , only some features of B are transferred to A. The features of B that are transferred to A depend both on A and on B. This is the central thrust of Black's well known interaction theory of metaphor comprehension (1979). However, this theory is somewhat abstract, and it is not obvious how it may be implemented in terms of mental representations and processes. In this paper we describe a simple computational model of on-line metaphor comprehension which combines Black's interaction theory with the idea that metaphor comprehension is a type of categorisation process (Glucksberg & Keysar, 1990, 1993). The model is based on a distributed connectionist network depicting semantic memory (McClelland & Rumelhart, 1986). The network learns feature-based information about various concepts. A metaphor is comprehended by applying a representation of the first term A to the network storing knowledge of the second term B, in an attempt to categorise it as an exemplar of B. The output of this network is a representation of A transformed by the knowledge of B. We explain how this process embodies an interaction of knowledge between the two terms of the metaphor, how it accords with the contemporary theory of metaphor stating that comprehension for literal and metaphorical comparisons is carried out by identical mechanisms (Gibbs, 1994), and how it accounts for both existing empirical evidence (Glucksberg, McGlone, & Manfredi, 1997) and generates new predictions. In this model, the distinction between literal and metaphorical language is one of degree, not of kind

    Connectionism and psychological notions of similarity

    Get PDF
    Kitcher (1996) offers a critique of connectionism based on the belief that connectionist information processing relies inherently on metric similarity relations. Metric similarity measures are independent of the order of comparison (they are symmetrical) whereas human similarity judgments are asymmetrical. We answer this challenge by describing how connectionist systems naturally produce asymmetric similarity effects. Similarity is viewed as an implicit byproduct of information processing (in particular categorization) whereas the reporting of similarity judgments is a separate and explicit meta-cognitive process. The view of similarity as a process rather than the product of an explicit comparison is discussed in relation to the spatial, feature, and structural theories of similarity

    Fluctuations and Defects in Lamellar Stacks of Amphiphilic Bilayers

    Full text link
    We review recent molecular dynamics simulations of thermally activated undulations and defects in the lamellar LαL_\alpha phase of a binary amphiphile-solvent mixture, using an idealized molecular coarse-grained model: Solvent particles are represented by beads, and amphiphiles by bead-and-spring tetramers. We find that our results are in excellent agreement with the predictions of simple mesoscopic theories: An effective interface model for the undulations, and a line tension model for the (pore) defects. We calculate the binding rigidity and the compressibility modulus of the lamellar stack as well as the line tension of the pore rim. Finally, we discuss implications for polymer-membrane systems.Comment: to appear in Computer Physics Communications (2005

    A connectionist account of the emergence of the literal-metaphorical-anomalous distinction in young children

    Get PDF
    We present the first developmental computational model of metaphor comprehension, which seeks to relate the emergence of a distinction between literal and non-literal similarity in young children to the development of semantic representations. The model gradually learns to distinguish literal from metaphorical semantic juxtapositions as it acquires more knowledge about the vehicle domain. In accordance with Keil (1986), the separation of literal from metaphorical comparisons is found to depend on the maturity of the vehicle concept stored within the network. The model generates a number of explicit novel predictions

    Mapping the origins of time: Scalar errors in infant time estimation

    Get PDF
    Time is central to any understanding of the world. In adults, estimation errors grow linearly with the length of the interval, much faster than would be expected of a clock-like mechanism. Here we present the first direct demonstration that this is also true in human infants. Using an eye-tracking paradigm, we examined 4-, 6-, 10-, and 14-month-olds' responses to the omission of a recurring target, on either a 3- or 5-s cycle. At all ages (a) both fixation and pupil dilation measures were time locked to the periodicity of the test interval, and (b) estimation errors grew linearly with the length of the interval, suggesting that trademark interval timing is in place from 4 months

    Heat flow increase following the rise of mantle isotherms and crustal thinning

    Get PDF
    Heat flow measurements in the western United States define a zone of high heat flow which coincides with the Basin and Range Province where extension has taken place recently. In this region, the average reduced heat flow is approx 30 mW sq. meters higher than in stable continental provinces; locally (e.g., Battle Mountain High), the heat flow anomaly can be more than 100 mW/sq meters above average. Estimates of the amount of extension range between 30% and 100% for the past 30 Ma. In the Colorado Plateau, which has been uplifted without major tectonic deformation, the heat flow is only slightly above average. Analytical calculations show that an abrupt change in heat flow at the base of the lithosphere 30 Ma ago would not affect the surface significantly. Uplift would proceed at a slow rate. A thermal perturbation at the base of a 40 km thick crust, however, would reach the surface faster and, after 30 Ma, the increase in surface heat flow would be about 75% of the amplitude of the heat flow anomaly. The number of volcanic rocks in the Basin and Range suggests that magma intrusions may provide an effective heat transfer mechanism. It can be show that if the source of the intrusions is at the base of the lithosphere, the response time will be much longer than 30 Ma, and most ot the heat transferred from the asthenosphere will be absorbed in the lithosphere

    The time course of routine action

    Get PDF
    Previous studies of action selection in routinized tasks have used error rates as their sole dependent measure (e.g. Reason, 1979; Schwartz et al., 1998). Consequently, conclusions about the underlying mechanisms of correct behavior are necessarily indirect. The present experiment examines the performance of normal subjects in the prototypical coffee task (Botvinick & Plaut, 2004) when carried out in a virtual environment on screen. This has the advantage of (a) constraining the possible errors more tightly than a real world environment, and (b) giving access to latencies as an additional, finer grained measure of performance. We report error data and timing of action selection at the crucial branching points for the production of routinized task sequences both with and without a secondary task. Processing branching points leads to increased latencies. The presence of the secondary task has a greater effect on latencies at branching points than at equivalent non-branching points. Furthermore, error data and latencies dissociate, suggesting that the exact timing is a valid and valuable source of information when trying to understand the processes that govern routine tasks. The results of the experiment are discussed in relation to their implication for computational accounts of routine action selection

    “Are you looking at me?” How children’s gaze judgments improve with age

    Get PDF
    Adults’ judgments of another person’s gaze reflect both sensory (e.g., perceptual) and nonsensory (e.g., decisional) processes. We examined how children’s performance on a gaze categorization task develops over time by varying uncertainty in the stimulus presented to 6- to 11- year-olds (n = 57). We found that younger children responded “direct” over a wider range of gaze deviations. We also found that increasing uncertainty led to an increase in direct responses, across all age groups. A simple model to account for these data revealed that although younger children had a noisier sensory representation of the stimulus, most developmental changes in gaze were because of a change in children’s response criteria (category boundaries). These results suggest that although the core mechanisms for gaze processing are already in place by the age of 6, their development continues across the whole of childhood. (PsycINFO Database Record (c) 2016 APA, all rights reserved

    Thermal Fluctuations in a Lamellar Phase of a Binary Amphiphile-Solvent Mixture: A Molecular Dynamics Study

    Full text link
    We investigate thermal fluctuations in a smectic A phase of an amphiphile-solvent mixture with molecular dynamics simulations. We use an idealized model system, where solvent particles are represented by simple beads, and amphiphiles by bead-and-spring tetramers. At a solvent bead fraction of 20 % and sufficiently low temperature, the amphiphiles self-assemble into a highly oriented lamellar phase. Our study aims at comparing the structure of this phase with the predictions of the elastic theory of thermally fluctuating fluid membrane stacks [Lei et al., J. Phys. II 5, 1155 (1995)]. We suggest a method which permits to calculate the bending rigidity and compressibility modulus of the lamellar stack from the simulation data. The simulation results are in reasonable agreement with the theory
    corecore