90 research outputs found

    Cognitive Information Processing

    Get PDF
    Contains reports on five research projects.National Science Foundation (Grant SED76-81985)Associated Press (Grant)Providence Gravure, Inc. (Grant)Taylor Publishing Company (Grant)Sony Corporation (Grant

    Effects of Gene Dose, Chromatin, and Network Topology on Expression in Drosophila melanogaster.

    Get PDF
    Deletions, commonly referred to as deficiencies by Drosophila geneticists, are valuable tools for mapping genes and for genetic pathway discovery via dose-dependent suppressor and enhancer screens. More recently, it has become clear that deviations from normal gene dosage are associated with multiple disorders in a range of species including humans. While we are beginning to understand some of the transcriptional effects brought about by gene dosage changes and the chromosome rearrangement breakpoints associated with them, much of this work relies on isolated examples. We have systematically examined deficiencies of the left arm of chromosome 2 and characterize gene-by-gene dosage responses that vary from collapsed expression through modest partial dosage compensation to full or even over compensation. We found negligible long-range effects of creating novel chromosome domains at deletion breakpoints, suggesting that cases of gene regulation due to altered nuclear architecture are rare. These rare cases include trans de-repression when deficiencies delete chromatin characterized as repressive in other studies. Generally, effects of breakpoints on expression are promoter proximal (~100bp) or in the gene body. Effects of deficiencies genome-wide are in genes with regulatory relationships to genes within the deleted segments, highlighting the subtle expression network defects in these sensitized genetic backgrounds

    A Risk Assessment Tool for Predicting Fragility Fractures and Mortality in the Elderly

    Get PDF
    Existing fracture risk assessment tools are not designed to predict fracture-associated consequences, possibly contributing to the current undermanagement of fragility fractures worldwide. We aimed to develop a risk assessment tool for predicting the conceptual risk of fragility fractures and its consequences. The study involved 8965 people aged >= 60 years from the Dubbo Osteoporosis Epidemiology Study and the Canadian Multicentre Osteoporosis Study. Incident fracture was identified from X-ray reports and questionnaires, and death was ascertained though contact with a family member or obituary review. We used a multistate model to quantify the effects of the predictors on the transition risks to an initial and subsequent incident fracture and mortality, accounting for their complex interrelationships, confounding effects, and death as a competing risk. There were 2364 initial fractures, 755 subsequent fractures, and 3300 deaths during a median follow-up of 13 years (interquartile range [IQR] 7-15). The prediction model included sex, age, bone mineral density, history of falls within 12 previous months, prior fracture after the age of 50 years, cardiovascular diseases, diabetes mellitus, chronic pulmonary diseases, hypertension, and cancer. The model accurately predicted fragility fractures up to 11 years of follow-up and post-fracture mortality up to 9 years, ranging from 7 years after hip fractures to 15 years after non-hip fractures. For example, a 70-year-old woman with aT-score of -1.5 and without other risk factors would have 10% chance of sustaining a fracture and an 8% risk of dying in 5 years. However, after an initial fracture, her risk of sustaining another fracture or dying doubles to 33%, ranging from 26% after a distal to 42% post hip fracture. A robust statistical technique was used to develop a prediction model for individualization of progression to fracture and its consequences, facilitating informed decision making about risk and thus treatment for individuals with different risk profiles. (c) 2020 American Society for Bone and Mineral Research

    Reduced bone loss is associated with reduced mortality risk in subjects exposed to nitrogen bisphosphonates: A mediation analysis

    Get PDF
    Bisphosphonates, potent anti-resorptive agents, have been found to be associated with mortality reduction. Accelerated bone loss is, in itself, an independent predictor of mortality risk, but the relationship between bisphosphonates, bone loss, and mortality is unknown. This study aimed to determine whether the association between bisphosphonates and mortality is mediated by a reduction in the rate of bone loss. Participants from the population‐based Canadian Multicentre Osteoporosis Study were followed prospectively between1996 and 2011. Comorbidities and lifestyle factors were collected at baseline and bone mineral density (BMD) at baseline and at years 3 (for those aged 40 to 60 years), 5, and 10. Rate of bone loss was calculated using linear regression. Information on medication use was obtained yearly. Bisphosphonate users grouped into nitrogen bisphosphonates (nBP; alendronate or risedronate) and etidronate and non‐users (NoRx) were matched by propensity score, including all baseline factors as well as time of treatment. Cox’s proportional hazards models, unadjusted and adjusted for annual rate of bone loss, were used to determine the association between nBP and etidronate versus NoRx. For the treatment groups with significant mortality risk reduction, the percent of mortality reduction mediated by a reduction in the rate of bone loss was estimated using a causal mediation analysis. There were 271 pairs of nBP and matched NoRx and 327 pairs of etidronate and matched NoRx. nBP but not etidronate use was associated with significant mortality risk reduction (hazard ratios [HR]=0.61 [95% confidenceinterval0.39–0.96]and1.35[95%CI0.86–2.11] for nBP and etidronate, respectively). Rapid bone loss was associated with more than2‐fold increased mortality risk compared with no loss. Mediation analysis indicated that39% (95%CI7%–84%) of the nBP association with mortality was related to a reduction in the rate of bone loss. This finding provides an insight into the mechanism of the relationship between nBP and survival benefit in osteoporotic patients

    Osteocyte transcriptome mapping identifies a molecular landscape controlling skeletal homeostasis and susceptibility to skeletal disease.

    Get PDF
    Osteocytes are master regulators of the skeleton. We mapped the transcriptome of osteocytes from different skeletal sites, across age and sexes in mice to reveal genes and molecular programs that control this complex cellular-network. We define an osteocyte transcriptome signature of 1239 genes that distinguishes osteocytes from other cells. 77% have no previously known role in the skeleton and are enriched for genes regulating neuronal network formation, suggesting this programme is important in osteocyte communication. We evaluated 19 skeletal parameters in 733 knockout mouse lines and reveal 26 osteocyte transcriptome signature genes that control bone structure and function. We showed osteocyte transcriptome signature genes are enriched for human orthologs that cause monogenic skeletal disorders (P = 2.4 × 10-22) and are associated with the polygenic diseases osteoporosis (P = 1.8 × 10-13) and osteoarthritis (P = 1.6 × 10-7). Thus, we reveal the molecular landscape that regulates osteocyte network formation and function and establish the importance of osteocytes in human skeletal disease

    Genetic determinants of heel bone properties: genome-wide association meta-analysis and replication in the GEFOS/GENOMOS consortium

    Get PDF
    Quantitative ultrasound of the heel captures heel bone properties that independently predict fracture risk and, with bone mineral density (BMD) assessed by X-ray (DXA), may be convenient alternatives for evaluating osteoporosis and fracture risk. We performed a meta-analysis of genome-wide association (GWA) studies to assess the genetic determinants of heel broadband ultrasound attenuation (BUA; n = 14 260), velocity of sound (VOS; n = 15 514) and BMD (n = 4566) in 13 discovery cohorts. Independent replication involved seven cohorts with GWA data (in silico n = 11 452) and new genotyping in 15 cohorts (de novo n = 24 902). In combined random effects, meta-analysis of the discovery and replication cohorts, nine single nucleotide polymorphisms (SNPs) had genome-wide significant (P < 5 × 10(-8)) associations with heel bone properties. Alongside SNPs within or near previously identified osteoporosis susceptibility genes including ESR1 (6q25.1: rs4869739, rs3020331, rs2982552), SPTBN1 (2p16.2: rs11898505), RSPO3 (6q22.33: rs7741021), WNT16 (7q31.31: rs2908007), DKK1 (10q21.1: rs7902708) and GPATCH1 (19q13.11: rs10416265), we identified a new locus on chromosome 11q14.2 (rs597319 close to TMEM135, a gene recently linked to osteoblastogenesis and longevity) significantly associated with both BUA and VOS (P < 8.23 × 10(-14)). In meta-analyses involving 25 cohorts with up to 14 985 fracture cases, six of 10 SNPs associated with heel bone properties at P < 5 × 10(-6) also had the expected direction of association with any fracture (P < 0.05), including three SNPs with P < 0.005: 6q22.33 (rs7741021), 7q31.31 (rs2908007) and 10q21.1 (rs7902708). In conclusion, this GWA study reveals the effect of several genes common to central DXA-derived BMD and heel ultrasound/DXA measures and points to a new genetic locus with potential implications for better understanding of osteoporosis pathophysiology

    Genetic Sharing with Cardiovascular Disease Risk Factors and Diabetes Reveals Novel Bone Mineral Density Loci.

    Get PDF
    Bone Mineral Density (BMD) is a highly heritable trait, but genome-wide association studies have identified few genetic risk factors. Epidemiological studies suggest associations between BMD and several traits and diseases, but the nature of the suggestive comorbidity is still unknown. We used a novel genetic pleiotropy-informed conditional False Discovery Rate (FDR) method to identify single nucleotide polymorphisms (SNPs) associated with BMD by leveraging cardiovascular disease (CVD) associated disorders and metabolic traits. By conditioning on SNPs associated with the CVD-related phenotypes, type 1 diabetes, type 2 diabetes, systolic blood pressure, diastolic blood pressure, high density lipoprotein, low density lipoprotein, triglycerides and waist hip ratio, we identified 65 novel independent BMD loci (26 with femoral neck BMD and 47 with lumbar spine BMD) at conditional FDR < 0.01. Many of the loci were confirmed in genetic expression studies. Genes validated at the mRNA levels were characteristic for the osteoblast/osteocyte lineage, Wnt signaling pathway and bone metabolism. The results provide new insight into genetic mechanisms of variability in BMD, and a better understanding of the genetic underpinnings of clinical comorbidity

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms

    WNT16 Influences Bone Mineral Density, Cortical Bone Thickness, Bone Strength, and Osteoporotic Fracture Risk

    Get PDF
    Peer reviewe
    corecore