996 research outputs found
Learning Economic Parameters from Revealed Preferences
A recent line of work, starting with Beigman and Vohra (2006) and
Zadimoghaddam and Roth (2012), has addressed the problem of {\em learning} a
utility function from revealed preference data. The goal here is to make use of
past data describing the purchases of a utility maximizing agent when faced
with certain prices and budget constraints in order to produce a hypothesis
function that can accurately forecast the {\em future} behavior of the agent.
In this work we advance this line of work by providing sample complexity
guarantees and efficient algorithms for a number of important classes. By
drawing a connection to recent advances in multi-class learning, we provide a
computationally efficient algorithm with tight sample complexity guarantees
( for the case of goods) for learning linear utility
functions under a linear price model. This solves an open question in
Zadimoghaddam and Roth (2012). Our technique yields numerous generalizations
including the ability to learn other well-studied classes of utility functions,
to deal with a misspecified model, and with non-linear prices
Non-Linear Rheological Properties and Neutron Scattering Investigation on Dilute Ring-Linear Blends
Equilibration processes in the Warm-Hot Intergalactic Medium
The Warm-Hot Intergalactic Medium (WHIM) is thought to contribute about 40-50
% to the baryonic budget at the present evolution stage of the universe. The
observed large scale structure is likely to be due to gravitational growth of
density fluctuations in the post-inflation era. The evolving cosmic web is
governed by non-linear gravitational growth of the initially weak density
fluctuations in the dark energy dominated cosmology. Non-linear structure
formation, accretion and merging processes, star forming and AGN activity
produce gas shocks in the WHIM. Shock waves are converting a fraction of the
gravitation power to thermal and non-thermal emission of baryonic/leptonic
matter. They provide the most likely way to power the luminous matter in the
WHIM. The plasma shocks in the WHIM are expected to be collisionless.
Collisionless shocks produce a highly non-equilibrium state with anisotropic
temperatures and a large differences in ion and electron temperatures. We
discuss the ion and electron heating by the collisionless shocks and then
review the plasma processes responsible for the Coulomb equilibration and
collisional ionisation equilibrium of oxygen ions in the WHIM. MHD-turbulence
produced by the strong collisionless shocks could provide a sizeable
non-thermal contribution to the observed Doppler parameter of the UV line
spectra of the WHIM.Comment: 13 pages, 4 figures, accepted for publication in Space Science
Reviews, special issue "Clusters of galaxies: beyond the thermal view",
Editor J.S. Kaastra, Chapter 8; work done by an international team at the
International Space Science Institute (ISSI), Bern, organised by J.S.
Kaastra, A.M. Bykov, S. Schindler & J.A.M. Bleeke
Zn Diffusion and α-Fe(Zn) Layer Growth During Annealing of Zn-Coated B Steel
Direct hot press forming of Zn-coated 22MnB5 steels is impeded by micro-cracks that occur in the substrate due to the presence of Zn during the forming process. A study was therefore undertaken to quantify concentration of Zn across the α-Fe(Zn) coating and on grain boundaries in the α-Fe(Zn) layer and the underlying γ-Fe(Zn) substrate after isothermal annealing of Zn-coated 22MnB5 at 1173 K (900 °C) and to link the Zn distribution to the amount and type of micro-cracks observed in deformed samples. Finite difference model was developed to describe Zn diffusion and the growth of the α-Fe(Zn) layer. The penetration of Zn into the γ-Fe(Zn) substrate after 600 seconds annealing at 1173 K (900 °C) through bulk diffusion is estimated to be 3 μm, and the diffusion depth of Zn on the γ-Fe(Zn) grain boundaries is estimated to be 6 μm, which is significantly shorter than the maximum length (15 to 50 μm) of the micro-cracks formed in the severely stressed conditions, indicating that the Zn diffusion into the γ-Fe(Zn) from the α-Fe(Zn) during annealing is not correlated to the depth of micro-cracks. On the other hand, the maximum amount of Zn present in α-Fe(Zn) layer decreases with annealing time as the layer grows and Zn oxidizes, and the amount of Zn-enriched areas inside the α-Fe(Zn) layer is reduced leading to reduced length of cracking. Solid-Metal-Induced Embrittlement mechanism is proposed to explain the benefit of extended annealing on reduced depth of micro-crack penetration into the γ-Fe(Zn) substrate
Sensitivity of the IceCube Detector to Astrophysical Sources of High Energy Muon Neutrinos
We present the results of a Monte-Carlo study of the sensitivity of the
planned IceCube detector to predicted fluxes of muon neutrinos at TeV to PeV
energies. A complete simulation of the detector and data analysis is used to
study the detector's capability to search for muon neutrinos from sources such
as active galaxies and gamma-ray bursts. We study the effective area and the
angular resolution of the detector as a function of muon energy and angle of
incidence. We present detailed calculations of the sensitivity of the detector
to both diffuse and pointlike neutrino emissions, including an assessment of
the sensitivity to neutrinos detected in coincidence with gamma-ray burst
observations. After three years of datataking, IceCube will have been able to
detect a point source flux of E^2*dN/dE = 7*10^-9 cm^-2s^-1GeV at a 5-sigma
significance, or, in the absence of a signal, place a 90% c.l. limit at a level
E^2*dN/dE = 2*10^-9 cm^-2s^-1GeV. A diffuse E-2 flux would be detectable at a
minimum strength of E^2*dN/dE = 1*10^-8 cm^-2s^-1sr^-1GeV. A gamma-ray burst
model following the formulation of Waxman and Bahcall would result in a 5-sigma
effect after the observation of 200 bursts in coincidence with satellite
observations of the gamma-rays.Comment: 33 pages, 13 figures, 6 table
A Full Shell Model Study of a~=~48 Nuclei
Exact diagonalizations with a minimally modified realistic force lead to
detailed agreement with measured level schemes and electromagnetic transitions
in Ca, Sc, Ti, V, Cr and Mn.
Gamow-Teller strength functions are systematically calculated and reproduce the
data to within the standard quenching factor. Their fine structure indicates
that fragmentation makes much strength unobservable. As a by-product, the
calculations suggest a microscopic description of the onset of rotational
motion. The spectroscopic quality of the results provides strong arguments in
favour of the general validity of monopole corrected realistic forces, which is
discussed.Comment: 30 pages, LaTeX with epsf.sty, 14 Postscript figures included and
compressed using uufiles. Completely new version of previous preprint
nucl-th/9307001. FTUAM-93/01, CRN/PT 93-3
Green function techniques in the treatment of quantum transport at the molecular scale
The theoretical investigation of charge (and spin) transport at nanometer
length scales requires the use of advanced and powerful techniques able to deal
with the dynamical properties of the relevant physical systems, to explicitly
include out-of-equilibrium situations typical for electrical/heat transport as
well as to take into account interaction effects in a systematic way.
Equilibrium Green function techniques and their extension to non-equilibrium
situations via the Keldysh formalism build one of the pillars of current
state-of-the-art approaches to quantum transport which have been implemented in
both model Hamiltonian formulations and first-principle methodologies. We offer
a tutorial overview of the applications of Green functions to deal with some
fundamental aspects of charge transport at the nanoscale, mainly focusing on
applications to model Hamiltonian formulations.Comment: Tutorial review, LaTeX, 129 pages, 41 figures, 300 references,
submitted to Springer series "Lecture Notes in Physics
On the selection of AGN neutrino source candidates for a source stacking analysis with neutrino telescopes
The sensitivity of a search for sources of TeV neutrinos can be improved by
grouping potential sources together into generic classes in a procedure that is
known as source stacking. In this paper, we define catalogs of Active Galactic
Nuclei (AGN) and use them to perform a source stacking analysis. The grouping
of AGN into classes is done in two steps: first, AGN classes are defined, then,
sources to be stacked are selected assuming that a potential neutrino flux is
linearly correlated with the photon luminosity in a certain energy band (radio,
IR, optical, keV, GeV, TeV). Lacking any secure detailed knowledge on neutrino
production in AGN, this correlation is motivated by hadronic AGN models, as
briefly reviewed in this paper.
The source stacking search for neutrinos from generic AGN classes is
illustrated using the data collected by the AMANDA-II high energy neutrino
detector during the year 2000. No significant excess for any of the suggested
groups was found.Comment: 43 pages, 12 figures, accepted by Astroparticle Physic
Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector
A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results
Measurement of D*+/- meson production in jets from pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
This paper reports a measurement of D*+/- meson production in jets from
proton-proton collisions at a center-of-mass energy of sqrt(s) = 7 TeV at the
CERN Large Hadron Collider. The measurement is based on a data sample recorded
with the ATLAS detector with an integrated luminosity of 0.30 pb^-1 for jets
with transverse momentum between 25 and 70 GeV in the pseudorapidity range
|eta| < 2.5. D*+/- mesons found in jets are fully reconstructed in the decay
chain: D*+ -> D0pi+, D0 -> K-pi+, and its charge conjugate. The production rate
is found to be N(D*+/-)/N(jet) = 0.025 +/- 0.001(stat.) +/- 0.004(syst.) for
D*+/- mesons that carry a fraction z of the jet momentum in the range 0.3 < z <
1. Monte Carlo predictions fail to describe the data at small values of z, and
this is most marked at low jet transverse momentum.Comment: 10 pages plus author list (22 pages total), 5 figures, 1 table,
matches published version in Physical Review
- …
