171 research outputs found
Bone morphogenetic protein signaling promotes morphogenesis of blood vessels, wound epidermis, and actinotrichia during fin regeneration in zebrafish
Zebrafish fin regeneration involves initial formation of the wound epidermis and the blastema, followed by tissue morphogenesis. The mechanisms coordinating differentiation of distinct tissues of the regenerate are poorly understood. Here, we applied pharmacologic and transgenic approaches to address the role of bone morphogenetic protein (BMP) signaling during fin restoration. To map the BMP transcriptional activity, we analyzed the expression of the evolutionarily conserved direct phospho-Smad1 target gene, id1, and its homologs id2a and id3. This analysis revealed the BMP activity in the distal blastema, wound epidermis, osteoblasts, and blood vessels of the regenerate. Blocking the BMP function with a selective chemical inhibitor of BMP type I receptors, DMH1, suppressed id1 and id3 expression and arrested regeneration after blastema formation. We identified several previously uncharacterized functions of BMP during fin regeneration. Specifically, BMP signaling is required for remodeling of plexus into structured blood vessels in the rapidly growing regenerate. It organizes the wound epithelium by triggering wnt5b expression and promoting Collagen XIV-A deposition into the basement membrane. BMP represents the first known signaling that induces actinotrichia formation in the regenerate. Our data reveal a multifaceted role of BMP for coordinated morphogenesis of distinct tissues during regeneration of a complex vertebrate appendage.—Thorimbert, V., König, D., Marro, J., Ruggiero, F., Jaźwińska, A. Bone morphogenetic protein signaling promotes morphogenesis of blood vessels, wound epidermis, and actinotrichia during fin regeneration in zebrafish
Ex vivo multiscale quantitation of skin biomechanics in wild-type and genetically-modified mice using multiphoton microscopy
International audienceSoft connective tissues such as skin, tendon or cornea are made of about 90% of extracellular matrix proteins, fibrillar collagens being the major components. Decreased or aberrant collagen synthesis generally results in defective tissue mechanical properties as the classic form of Elhers-Danlos syndrome (cEDS). This connective tissue disorder is caused by mutations in collagen V genes and is mainly characterized by skin hyperextensibility. To investigate the relationship between the microstructure of normal and diseased skins and their macroscopic mechanical properties, we imaged and quantified the microstructure of dermis of ex vivo murine skin biopsies during uniaxial mechanical assay using multiphoton microscopy. We used two genetically-modified mouse lines for collagen V: a mouse model for cEDS harboring a Col5a2 deletion (a.k.a. pN allele) and the transgenic K14-COL5A1 mice which overexpress the human COL5A1 gene in skin. We showed that in normal skin, the collagen fibers continuously align with stretch, generating the observed increase in mechanical stress. Moreover, dermis from both transgenic lines exhibited altered collagen reorganization upon traction, which could be linked to microstructural modifications. These findings show that our multiscale approach provides new crucial information on the biomechanics of dermis that can be extended to all collagen-rich soft tissues
The Collagen V Homotrimer [α1(V)]3 Production Is Unexpectedly Favored over the Heterotrimer [α1(V)]2α2(V) in Recombinant Expression Systems
Collagen V, a fibrillar collagen with important functions in tissues, assembles into distinct
chain associations. The most abundant and ubiquitous molecular form is the heterotrimer
[α1(V)]2α2(V). In the attempt to produce high levels of recombinant collagen V heterotrimer
for biomedical device uses, and to identify key factors that drive heterotrimeric chain
association, several cell expression systems (yeast, insect, and mammalian cells) have been
assayed by cotransfecting the human proα1(V) and proα2(V) chain cDNAs. Suprisingly, in
all recombinant expression systems, the formation of [α1(V)]3 homotrimers was considerably favored over the heterotrimer. In addition, pepsin-sensitive proα2(V) chains were found in HEK-293 cell media indicating that these cells lack quality control proteins preventing
collagen monomer secretion. Additional transfection with Hsp47 cDNA, encoding the
collagen-specific chaperone Hsp47, did not increase heterotrimer production. Double
immunofluorescence with antibodies against collagen V α-chains showed that, contrary to fibroblasts, collagen V α-chains did not colocalized intracellularly in transfected cells. Monensin treatment had no effect on the heterotrimer production. The heterotrimer production seems to require specific machinery proteins, which are not endogenously
expressed in the expression systems. The different constructs and transfected cells we have
generated represent useful tools to further investigate the mechanisms of collagen trimer
assembly
Analyse multi-échelles des propriétés biomécaniques de la peau de souris saine et malade
La peau est un tissu complexe composé de 3 couches : l'épiderme, le derme et l'hypoderme. Le derme est responsable de la majeure partie des propriétés mécaniques de la peau. Une modification de la composition du derme entraîne ainsi des modifications drastiques du comportement mécanique de la peau, comme dans la maladie d'Ehlers-Danlos, qui se caractérise par une hyper?élasticité des tissus. Au niveau microstructural, le derme est composé essentiellement de matrice extracellulaire, formée pour la majeure partie d'un réseau désordonné de fibres de collagène. Pour élucider le lien exact entre organisation microstructurale et propriétés mécaniques de la peau, nous réalisons des essais de traction uniaxiaux in situ sous un microscope multiphoton avec détection du signal de génération de seconde harmonique. Ceci nous permet de suivre la réponse de la microstructure du tissu au cours de l'essai mécanique. Des paramètres quantitatifs ont été développés pour caractériser à la fois la réponse mécanique macroscopique du tissu et le réarrangement du réseau de fibres de collagène sous chargement. Nous pouvons ainsi comparer le comportement multi-échelles de peau de souris saine et de peau de souris atteinte d'une mutation affectant la microstructure du derme
The CARE accelerator R&D programme in Europe
Published online on JACoWCARE, an ambitious and coordinated programme of accelerator research and developments oriented towards high energy physics projects, has been launched in January 2004 by the main European laboratories and the European Commission. This project aims at improving existing infrastructures dedicated to future projects such as linear colliders, upgrades of hadron colliders and high intensity proton drivers. We describe the CARE R&D plans, mostly devoted to advancing the performance of the superconducting technology, both in the fields of RF cavities for electron or proton acceleration and of high field magnets, as well as to developing high intensity electron and proton injectors. We highlight some results and progress obtained so far
Etude de la réorganisation macroscopique de la peau de souris lors d'une sollicitation bi-axiale
La peau est composée en majorité de collagène et présente une microstructure très hiérarchisée qui influe sur son comportement mécanique aux différentes échelles. Pour caractériser l'influence de la microstructure sur les propriétés mécaniques, un test de traction bi-axiale couplé à une mesure macroscopique (corrélation d'images numériques) et microscopique (génération de second harmonique) a été développé . A terme, ce travail permettra de corréler les propriétés macroscopiques à la microstructures. Cette étude présente les résultats de la mesure effectuée par corrélation d'images
The Signal Peptide of Staphylococcus aureus Panton Valentine Leukocidin LukS Component Mediates Increased Adhesion to Heparan Sulfates
Staphylococcus aureus necrotizing pneumonia is a severe disease caused by S. aureus strains carrying the Panton Valentine leukocidin (PVL) genes (lukS-PV & lukF-PV) encoded on various bacteriophages (such as phiSLT). Clinical PVL+ strains isolated from necrotizing pneumonia display an increased attachment to matrix molecules (type I and IV collagens and laminin), a phenotype that could play a role in bacterial adhesion to damaged airway epithelium during the early stages of necrotizing pneumonia (J Infect Dis 2004; 190: 1506–15). To investigate the basis of the observed adhesion of S. aureus PVL+ strains, we compared the ability of PVL+ and their isogenic PVL− strains to attach to various immobilized matrix molecules. The expression of recombinant fragments of the PVL subunits and the addition of synthetic peptides indicated that the processed LukS-PV signal peptide (LukS-PV SP) was sufficient to significantly enhance the ability of S. aureus to attach to extracellular matrix (ECM) components. Furthermore, we showed that adhesion to ECM components was inhibited by heparin and heparan sulfates (HS) suggesting that in vivo, HS could function as a molecular bridge between the matrix and S. aureus expressing the LukS-PV signal peptide. Site directed mutagenesis, biochemical and structural analyses of the LukS-PV signal peptide indicate that this peptide is present at the S. aureus surface, binds to HS in solid phase assay, and mediates the enhanced S. aureus matrix component adhesion. Our data suggests that after its cleavage by signal peptidase, the signal peptide is released from the membrane and associates to the cell wall through its unique C-terminus sequence, while its highly positively charged N-terminus is exposed on the bacterial surface, allowing its interaction with extracellular matrix-associated HS. This mechanism may provide a molecular bridge that enhances the attachment of the S. aureus PVL+ strains to ECM components exposed at damaged epithelial sites
Single-cell multi-omics identifies chronic inflammation as a driver of TP53-mutant leukemic evolution
Understanding the genetic and nongenetic determinants of tumor protein 53 (TP53)-mutation-driven clonal evolution and subsequent transformation is a crucial step toward the design of rational therapeutic strategies. Here we carry out allelic resolution single-cell multi-omic analysis of hematopoietic stem/progenitor cells (HSPCs) from patients with a myeloproliferative neoplasm who transform to TP53-mutant secondary acute myeloid leukemia (sAML). All patients showed dominant TP53 ‘multihit’ HSPC clones at transformation, with a leukemia stem cell transcriptional signature strongly predictive of adverse outcomes in independent cohorts, across both TP53-mutant and wild-type (WT) AML. Through analysis of serial samples, antecedent TP53-heterozygous clones and in vivo perturbations, we demonstrate a hitherto unrecognized effect of chronic inflammation, which suppressed TP53 WT HSPCs while enhancing the fitness advantage of TP53-mutant cells and promoted genetic evolution. Our findings will facilitate the development of risk-stratification, early detection and treatment strategies for TP53-mutant leukemia, and are of broad relevance to other cancer types
The effectiveness, acceptability and cost-effectiveness of psychosocial interventions for maltreated children and adolescents: an evidence synthesis.
BACKGROUND: Child maltreatment is a substantial social problem that affects large numbers of children and young people in the UK, resulting in a range of significant short- and long-term psychosocial problems. OBJECTIVES: To synthesise evidence of the effectiveness, cost-effectiveness and acceptability of interventions addressing the adverse consequences of child maltreatment. STUDY DESIGN: For effectiveness, we included any controlled study. Other study designs were considered for economic decision modelling. For acceptability, we included any study that asked participants for their views. PARTICIPANTS: Children and young people up to 24 years 11 months, who had experienced maltreatment before the age of 17 years 11 months. INTERVENTIONS: Any psychosocial intervention provided in any setting aiming to address the consequences of maltreatment. MAIN OUTCOME MEASURES: Psychological distress [particularly post-traumatic stress disorder (PTSD), depression and anxiety, and self-harm], behaviour, social functioning, quality of life and acceptability. METHODS: Young Persons and Professional Advisory Groups guided the project, which was conducted in accordance with Cochrane Collaboration and NHS Centre for Reviews and Dissemination guidance. Departures from the published protocol were recorded and explained. Meta-analyses and cost-effectiveness analyses of available data were undertaken where possible. RESULTS: We identified 198 effectiveness studies (including 62 randomised trials); six economic evaluations (five using trial data and one decision-analytic model); and 73 studies investigating treatment acceptability. Pooled data on cognitive-behavioural therapy (CBT) for sexual abuse suggested post-treatment reductions in PTSD [standardised mean difference (SMD) -0.44 (95% CI -4.43 to -1.53)], depression [mean difference -2.83 (95% CI -4.53 to -1.13)] and anxiety [SMD -0.23 (95% CI -0.03 to -0.42)]. No differences were observed for post-treatment sexualised behaviour, externalising behaviour, behaviour management skills of parents, or parental support to the child. Findings from attachment-focused interventions suggested improvements in secure attachment [odds ratio 0.14 (95% CI 0.03 to 0.70)] and reductions in disorganised behaviour [SMD 0.23 (95% CI 0.13 to 0.42)], but no differences in avoidant attachment or externalising behaviour. Few studies addressed the role of caregivers, or the impact of the therapist-child relationship. Economic evaluations suffered methodological limitations and provided conflicting results. As a result, decision-analytic modelling was not possible, but cost-effectiveness analysis using effectiveness data from meta-analyses was undertaken for the most promising intervention: CBT for sexual abuse. Analyses of the cost-effectiveness of CBT were limited by the lack of cost data beyond the cost of CBT itself. CONCLUSIONS: It is not possible to draw firm conclusions about which interventions are effective for children with different maltreatment profiles, which are of no benefit or are harmful, and which factors encourage people to seek therapy, accept the offer of therapy and actively engage with therapy. Little is known about the cost-effectiveness of alternative interventions. LIMITATIONS: Studies were largely conducted outside the UK. The heterogeneity of outcomes and measures seriously impacted on the ability to conduct meta-analyses. FUTURE WORK: Studies are needed that assess the effectiveness of interventions within a UK context, which address the wider effects of maltreatment, as well as specific clinical outcomes. STUDY REGISTRATION: This study is registered as PROSPERO CRD42013003889. FUNDING: The National Institute for Health Research Health Technology Assessment programme
- …