52 research outputs found

    Decreased Pre-existing Ad5 Capsid and Ad35 Neutralizing Antibodies Increase HIV-1 Infection Risk in the Step Trial Independent of Vaccination

    Get PDF
    <div><h3>Background</h3><p>The Step trial raised the possibility that uncircumcised men with pre-existing Ad5 neutralizing antibodies carried an increased risk of HIV infection after vaccination. Thus, understanding Ad seropositivity in humans is important to the development of an AIDS vaccine. Here, we analyze the impact of different Ad5-specific neutralizing antibodies on immune function and clinical outcome.</p> <h3>Methods and Findings</h3><p>Ad seropositivity in the Step trial volunteers was analyzed using chimeric rAd5/35 vectors to characterize their specificity for Ad5 fiber and non-fiber external (capsid) proteins. Immune responses and HIV seropositivity were correlated with the specificity of Ad5-neutralizing antibodies. Neutralizing antibodies induced by the vaccine in Ad5 seronegative subjects were directed preferentially to Ad5 capsid proteins, although some fiber-neutralizing antibodies could be detected. Pre-vaccination Ad5 serostatus did not affect the capsid-directed response after three vaccinations. In contrast, anti-fiber antibody titers were significantly higher in volunteers who were Ad5 seropositive prior to vaccination. Those Ad5 seropositive subjects who generated anti-capsid responses showed a marked reduction in vaccine-induced CD8 responses. Unexpectedly, anti-vector immunity differed qualitatively in Ad5 seropositive participants who became HIV-1 infected compared to uninfected case controls; Ad5 seropositive participants who later acquired HIV had lower neutralizing antibodies to capsid. Moreover, Ad35 seropositivity was decreased in HIV-infected subjects compared with uninfected case controls, while seroprevalence for other serotypes including Ad14, Ad28 and Ad41 was similar in both groups.</p> <h3>Conclusions</h3><p>Together, these findings suggest that the case subjects were less immunologically responsive prior to infection. Subjects infected during the Step trial had qualitative differences in immunity that increased their risk of HIV-1 infection independent of vaccination.</p> </div

    Pharmacology and therapeutic implications of current drugs for type 2 diabetes mellitus

    Get PDF
    Type 2 diabetes mellitus (T2DM) is a global epidemic that poses a major challenge to health-care systems. Improving metabolic control to approach normal glycaemia (where practical) greatly benefits long-term prognoses and justifies early, effective, sustained and safety-conscious intervention. Improvements in the understanding of the complex pathogenesis of T2DM have underpinned the development of glucose-lowering therapies with complementary mechanisms of action, which have expanded treatment options and facilitated individualized management strategies. Over the past decade, several new classes of glucose-lowering agents have been licensed, including glucagon-like peptide 1 receptor (GLP-1R) agonists, dipeptidyl peptidase 4 (DPP-4) inhibitors and sodium/glucose cotransporter 2 (SGLT2) inhibitors. These agents can be used individually or in combination with well-established treatments such as biguanides, sulfonylureas and thiazolidinediones. Although novel agents have potential advantages including low risk of hypoglycaemia and help with weight control, long-term safety has yet to be established. In this Review, we assess the pharmacokinetics, pharmacodynamics and safety profiles, including cardiovascular safety, of currently available therapies for management of hyperglycaemia in patients with T2DM within the context of disease pathogenesis and natural history. In addition, we briefly describe treatment algorithms for patients with T2DM and lessons from present therapies to inform the development of future therapies

    The Immune System in Stroke

    Get PDF
    Stroke represents an unresolved challenge for both developed and developing countries and has a huge socio-economic impact. Although considerable effort has been made to limit stroke incidence and improve outcome, strategies aimed at protecting injured neurons in the brain have all failed. This failure is likely to be due to both the incompleteness of modelling the disease and its causes in experimental research, and also the lack of understanding of how systemic mechanisms lead to an acute cerebrovascular event or contribute to outcome. Inflammation has been implicated in all forms of brain injury and it is now clear that immune mechanisms profoundly influence (and are responsible for the development of) risk and causation of stroke, and the outcome following the onset of cerebral ischemia. Until very recently, systemic inflammatory mechanisms, with respect to common comorbidities in stroke, have largely been ignored in experimental studies. The main aim is therefore to understand interactions between the immune system and brain injury in order to develop novel therapeutic approaches. Recent data from clinical and experimental research clearly show that systemic inflammatory diseases -such as atherosclerosis, obesity, diabetes or infection - similar to stress and advanced age, are associated with dysregulated immune responses which can profoundly contribute to cerebrovascular inflammation and injury in the central nervous system. In this review, we summarize recent advances in the field of inflammation and stroke, focusing on the challenges of translation between pre-clinical and clinical studies, and potential anti-inflammatory/immunomodulatory therapeutic approaches

    How do high glycemic load diets influence coronary heart disease?

    Get PDF

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Nanotechnology advances towards development of targeted-treatment for obesity

    Get PDF
    Obesity through its association with type 2 diabetes (T2D), cancer and cardiovascular diseases (CVDs), poses a serious health threat, as these diseases contribute to high mortality rates. Pharmacotherapy alone or in combination with either lifestyle modifcation or surgery, is reliable in maintaining a healthy body weight, and preventing progression to obesity-induced diseases. However, the anti-obesity drugs are limited by non-specifcity and unsustainable weight loss efects. As such, novel and improved approaches for treatment of obesity are urgently needed. Nanotechnology-based therapies are investigated as an alternative strategy that can treat obesity and be able to overcome the drawbacks associated with conventional therapies. The review presents three nanotechnology-based anti-obesity strategies that target the white adipose tissues (WATs) and its vasculature for the reversal of obesity. These include inhibition of angiogenesis in the WATs, transformation of WATs to brown adipose tissues (BATs), and photothermal lipolysis of WATs. Compared to conventional therapy, the targeted-nanosystems have high tolerability, reduced side efects, and enhanced efcacy. These efects are reproducible using various nanocarriers (liposomes, polymeric and gold nanoparticles), thus providing a proof of concept that targeted nanotherapy can be a feasible strategy that can combat obesity and prevent its comorbiditie

    Glucagon-like peptide analogues for type 2 diabetes mellitus : systematic review and meta-analysis

    Get PDF
    Background Glucagon-like peptide (GLP-1) analogues are a new class of drugs used in the treatment of type 2 diabetes. They are given by injection, and regulate glucose levels by stimulating glucose-dependent insulin secretion and biosynthesis, suppressing glucagon secretion, and delaying gastric emptying and promoting satiety. This systematic review aims to provide evidence on the clinical effectiveness of the GLP-1 agonists in patients not achieving satisfactory glycaemic control with one or more oral glucose lowering drugs. Methods MEDLINE, EMBASE, the Cochrane Library and Web of Science were searched to find the relevant papers. We identified 28 randomised controlled trials comparing GLP-1 analogues with placebo, other glucose-lowering agents, or another GLP-1 analogue, in patients with type 2 diabetes with inadequate control on a single oral agent, or on dual therapy. Primary outcomes included HbA1c, weight change and adverse events. Results Studies were mostly of short duration, usually 26 weeks. All GLP-1 agonists reduced HbA1c by about 1% compared to placebo. Exenatide twice daily and insulin gave similar reductions in HbA1c, but exenatide 2 mg once weekly and liraglutide 1.8 mg daily reduced it by 0.20% and 0.30% respectively more than glargine. Liraglutide 1.2 mg daily reduced HbA1c by 0.34% more than sitagliptin 100 mg daily. Exenatide and liraglutide gave similar improvements in HbA1c to sulphonylureas. Exenatide 2 mg weekly and liraglutide 1.8 mg daily reduced HbA1c by more than exenatide 10 μg twice daily and sitagliptin 100 mg daily. Exenatide 2 mg weekly reduced HbA1c by 0.3% more than pioglitazone 45 mg daily. Exenatide and liraglutide resulted in greater weight loss (from 2.3 to 5.5 kg) than active comparators. This was not due simply to nausea. Hypoglycaemia was uncommon, except when combined with a sulphonylurea. The commonest adverse events with all GLP-1 agonists were initial nausea and vomiting. The GLP-1 agonists have some effect on beta-cell function, but this is not sustained after the drug is stopped. Conclusions GLP-1 agonists are effective in improving glycaemic control and promoting weight loss
    corecore