238 research outputs found

    Quantitative proteomics analysis reveals important roles of N-glycosylation on ER quality control system for development and pathogenesis in Magnaporthe oryzae

    Get PDF
    The fungal pathogen Magnaporthe oryzae can cause rice blast and wheat blast diseases, which threatens worldwide food production. During infection, M. oryzae follows a sequence of distinct developmental stages adapted to survival and invasion of the host environment. M. oryzae attaches onto the host by the conidium, and then develops an appressorium to breach the host cuticle. After penetrating, it forms invasive hyphae to quickly spread in the host cells. Numerous genetic studies have focused on the mechanisms underlying each step in the infection process, but systemic approaches are needed for a broader, integrated understanding of regulatory events during M. oryzae pathogenesis. Many infection-related signaling events are regulated through post-translational protein modifications within the pathogen. N-linked glycosylation, in which a glycan moiety is added to the amide group of an asparagine residue, is an abundant modification known to be essential for M. oryzae infection. In this study, we employed a quantitative proteomics analysis to unravel the overall regulatory mechanisms of N-glycosylation at different developmental stages of M. oryzae. We detected changes in N-glycosylation levels at 559 glycosylated residues (N-glycosites) in 355 proteins during different stages, and determined that the ER quality control system is elaborately regulated by N-glycosylation. The insights gained will help us to better understand the regulatory mechanisms of infection in pathogenic fungi. These findings may be also important for developing novel strategies for fungal disease control. Genetic studies have shown essential functions of N-glycosylation during infection of the plant pathogenic fungi, however, systematic roles of N-glycosylation in fungi is still largely unknown. Biological analysis demonstrated N-glycosylated proteins were widely present at different development stages of Magnaporthe oryzae and especially increased in the appressorium and invasive hyphae. A large-scale quantitative proteomics analysis was then performed to explore the roles of N-glycosylation in M. oryzae. A total of 559 N-glycosites from 355 proteins were identified and quantified at different developmental stages. Functional classification to the N-glycosylated proteins revealed N-glycosylation can coordinate different cellular processes for mycelial growth, conidium formation, and appressorium formation. N-glycosylation can also modify key components in N-glycosylation, O-glycosylation and GPI anchor pathways, indicating intimate crosstalk between these pathways. Interestingly, we found nearly all key components of the endoplasmic reticulum quality control (ERQC) system were highly N-glycosylated in conidium and appressorium. Phenotypic analyses to the gene deletion mutants revealed four ERQC components, Gls1, Gls2, GTB1 and Cnx1, are important for mycelial growth, conidiation, and invasive hyphal growth in host cells. Subsequently, we identified the Gls1 N-glycosite N497 was important for invasive hyphal growth and partially required for conidiation, but didn't affect colony growth. Mutation of N497 resulted in reduction of Gls1 in protein level, and localization from ER into the vacuole, suggesting N497 is important for protein stability of Gls1. Our study showed a snapshot of the N-glycosylation landscape in plant pathogenic fungi, indicating functions of this modification in cellular processes, developments and pathogenesis

    Quantitative proteomics of delirium cerebrospinal fluid

    Get PDF
    Delirium is a common cause and complication of hospitalization in older people, being associated with higher risk of future dementia and progression of existing dementia. However relatively little data are available on which biochemical pathways are dysregulated in the brain during delirium episodes, whether there are protein expression changes common among delirium subjects and whether there are any changes which correlate with the severity of delirium. We now present the first proteomic analysis of delirium cerebrospinal fluid (CSF), and one of few studies exploring protein expression changes in delirium. More than 270 proteins were identified in two delirium cohorts, 16 of which were dysregulated in at least 8 of 17 delirium subjects compared with a mild Alzheimer's disease neurological control group, and 31 proteins were significantly correlated with cognitive scores (mini-mental state exam and acute physiology and chronic health evaluation III). Bioinformatics analyses revealed expression changes in several protein family groups, including apolipoproteins, secretogranins/chromogranins, clotting/fibrinolysis factors, serine protease inhibitors and acute-phase response elements. These data not only provide confirmatory evidence that the inflammatory response is a component of delirium, but also reveal dysregulation of protein expression in a number of novel and unexpected clusters of proteins, in particular the granins. Another surprising outcome of this work is the level of similarity of CSF protein profiles in delirium patients, given the diversity of causes of this syndrome. These data provide additional elements for consideration in the pathophysiology of delirium as well as potential biomarker candidates for delirium diagnosis

    First measurement of the |t|-dependence of coherent J/ψ photonuclear production

    Get PDF
    The first measurement of the cross section for coherent J/ψ photoproduction as a function of |t|, the square of the momentum transferred between the incoming and outgoing target nucleus, is presented. The data were measured with the ALICE detector in ultra-peripheral Pb–Pb collisions at a centre-of-mass energy per nucleon pair sNN=5.02TeV with the J/ψ produced in the central rapidity region |y|<0.8, which corresponds to the small Bjorken-x range (0.3−1.4)×10−3. The measured |t|-dependence is not described by computations based only on the Pb nuclear form factor, while the photonuclear cross section is better reproduced by models including shadowing according to the leading-twist approximation, or gluon-saturation effects from the impact-parameter dependent Balitsky–Kovchegov equation. These new results are therefore a valid tool to constrain the relevant model parameters and to investigate the transverse gluonic structure at very low Bjorken-x.publishedVersio

    First measurement of coherent ρ0 photoproduction in ultra-peripheral Xe–Xe collisions at √sNN = 5.44 TeV

    Get PDF
    The first measurement of the coherent photoproduction of ρ0 vector mesons in ultra-peripheral Xe–Xe collisions at sNN=5.44 TeV is presented. This result, together with previous HERA γp data and γ–Pb measurements from ALICE, describes the atomic number (A) dependence of this process, which is particularly sensitive to nuclear shadowing effects and to the approach to the black-disc limit of QCD at a semi-hard scale. The cross section of the Xe+Xe→ρ0+Xe+Xe process, measured at midrapidity through the decay channel ρ0→π+π−, is found to be dσ/dy=131.5±5.6(stat.)−16.9+17.5(syst.) mb. The ratio of the continuum to resonant contributions for the production of pion pairs is also measured. In addition, the fraction of events accompanied by electromagnetic dissociation of either one or both colliding nuclei is reported. The dependence on A of cross section for the coherent ρ0 photoproduction at a centre-of-mass energy per nucleon of the γA system of WγA,n=65 GeV is found to be consistent with a power-law behaviour σ(γA→ρ0A)∝Aα with a slope α=0.96±0.02(syst.). This slope signals important shadowing effects, but it is still far from the behaviour expected in the black-disc limit.publishedVersio

    Increase in transmitted resistance to non-nucleoside reverse transcriptase inhibitors among newly diagnosed HIV-1 infections in Europe

    Get PDF
    Matti A Ristola on SPREAD Programme -työryhmän jäsen.Peer reviewe

    Geographic and temporal trends in the molecular epidemiology and genetic mechanisms of transmitted HIV-1 drug resistance:an individual-patient- and sequence-level meta-analysis

    Get PDF
    Regional and subtype-specific mutational patterns of HIV-1 transmitted drug resistance (TDR) are essential for informing first-line antiretroviral (ARV) therapy guidelines and designing diagnostic assays for use in regions where standard genotypic resistance testing is not affordable. We sought to understand the molecular epidemiology of TDR and to identify the HIV-1 drug-resistance mutations responsible for TDR in different regions and virus subtypes.status: publishe

    Particle identification in ALICE : a Bayesian approach

    Get PDF
    Peer reviewe

    Resolving the strange behavior of extraterrestrial potassium in the upper atmosphere

    Get PDF
    It has been known since the 1960s that the layers of Na and K atoms, which occur between 80 and 105 km in the Earth's atmosphere as a result of meteoric ablation, exhibit completely different seasonal behavior. In the extratropics Na varies annually, with a pronounced wintertime maximum and summertime minimum. However, K varies semiannually with a small summertime maximum and minima at the equinoxes. This contrasting behavior has never been satisfactorily explained. Here we use a combination of electronic structure and chemical kinetic rate theory to determine two key differences in the chemistries of K and Na. First, the neutralization of K+ ions is only favored at low temperatures during summer. Second, cycling between K and its major neutral reservoir KHCO3 is essentially temperature independent. A whole atmosphere model incorporating this new chemistry, together with a meteor input function, now correctly predicts the seasonal behavior of the K layer
    corecore