222 research outputs found

    Review of the Management of Relapsed Small-Cell Lung Cancer with Amrubicin Hydrochloride

    Get PDF
    Lung cancer is the leading cause of cancer death, and approximately 15% of all lung cancer patients have small-cell lung cancer (SCLC). Although second-line chemotherapy can produce tumor regression, the prognosis is poor. Amrubicin hydrochloride (AMR) is a synthetic anthracycline anticancer agent and a potent topoisomerase II inhibitor. Here, we discuss the features of SCLC, the chemistry, pharmacokinetics, and pharmacodynamics of AMR, the results of in vitro and in vivo studies, and the efficacy and safety of AMR monotherapy and combination therapy in clinical trials. With its predictable and manageable toxicities, AMR is one of the most attractive agents for the treatment of chemotherapy-sensitive and -refractory relapsed SCLC. Numerous studies are ongoing to define the applicability of AMR therapy for patients with SCLC. These clinical trials, including phase III studies, will clarify the status of AMR in the treatment of SCLC

    Vertical imbalance in organic carbon budgets is indicative of a missing vertical transfer during a phytoplankton bloom near South Georgia (COMICS)

    Get PDF
    The biological carbon pump, driven principally by surface production and sinking of organic matter to deep water and its subsequent remineralization to CO2 maintains atmospheric CO2 around 200 ppm lower than it would be if the ocean were abiotic. One important driver of the magnitude of this effect is the depth to which organic matter sinks before it is remineralised, a parameter we have limited confidence in measuring given the difficulty involved in balancing sources and sinks in the ocean's interior. This imbalance is due, in part, to our inability to measure respiration directly and our reliance on radiotracer-based proxies. One solution to these problems might be a temporal offset in which organic carbon accumulates in the mesopelagic zone (100–1000 m depth) early in the productive season prior to it being consumed later, a situation which could lead to a net apparent sink occurring if a steady state assumption is applied as is often the approach. In this work, we develop a novel accounting method to address this issue, independent of respiration measurements, by estimating fluxes into and accumulation within distinct vertical layers in the mesopelagic. We apply this approach to a time series of measurements of particle sinking velocities and interior organic carbon concentrations made during the declining phase of a large diatom bloom in a low-circulation region of the Southern Ocean downstream of South Georgia. Our data show that the major export event led to a significant accumulation of organic matter in the upper mesopelagic (100–200 m depth) which declined over several weeks, implying that temporal offsets need to be considered when compiling budgets. However, even when accounting for this accumulation, a mismatch in the vertically resolved organic carbon budget remained, implying that there are likely widespread processes that we do not yet understand that redistribute material vertically in the mesopelagic

    Phase II trial correlating standardized uptake value with pathologic complete response to pertuzumab and trastuzumab in breast cancer

    Get PDF
    PURPOSE Predictive biomarkers to identify patients with human epidermal growth factor receptor 2 (HER2)–positive breast cancer who may benefit from targeted therapy alone are required. We hypothesized that early measurements of tumor maximum standardized uptake values corrected for lean body mass (SULmax) on [ 18 F] fluorodeoxyglucose positron emission tomography/computed tomography would predict pathologic complete response (pCR) to neoadjuvant pertuzumab and trastuzumab (PT). PATIENTS AND METHODS Patients with stage II/III, estrogen receptor–negative, HER2-positive breast cancer received four cycles of neoadjuvant PT. [ 18 F]Fluorodeoxyglucose positron emission tomography/computed tomography was performed at baseline and 15 days after PT initiation (C1D15). Eighty evaluable patients were required to test the null hypothesis that the area under the curve of percentage of change in SULmax by C1D15 predicting pCR is less than or equal to 0.65, with a one-sided type I error rate of 10%. RESULTS Eighty-eight women were enrolled (83 evaluable), and 85% (75 of 88) completed all four cycles of PT. pCR after PT alone was 34%. Receiver operating characteristic analysis yielded an area under the curve of 0.76 (90% CI, 0.67 to 0.85), which rejected the null hypothesis. Between patients who obtained pCR versus not, a significant difference in median percent reduction in SULmax by C1D15 was observed (63.8% v 33.5%; P, .001), an SULmax reduction greater than or equal to 40% was more prevalent (86% v 46%; P, .001; negative predictive value, 88%; positive predictive value, 49%), and a significant difference in median C1D15 SULmax (1.6 v 3.9; P, .001) and higher proportion of C1D15 SULmax less than or equal to 3 (93% v 38%; P, .001; negative predictive value, 94%; positive predictive value, 55%) were observed. CONCLUSION Early changes in SULmax predict response to four cycles of PT in estrogen receptor–negative, HER2-positive breast cancer. Once optimized, this quantitative imaging strategy may facilitate a more tailored approach to therapy in this setting

    Updated Results of TBCRC026: Phase II Trial Correlating Standardized Uptake Value With Pathological Complete Response to Pertuzumab and Trastuzumab in Breast Cancer

    Get PDF
    PURPOSE: Predictive biomarkers to identify patients with human epidermal growth factor receptor 2 (HER2)-positive breast cancer who may benefit from targeted therapy alone are required. We hypothesized that early measurements of tumor maximum standardized uptake value corrected for lean body mass (SULmax) on 18F-labeled fluorodeoxyglucose positron emission tomography-computed tomography (PET-CT) would predict pathologic complete response (pCR) to pertuzumab and trastuzumab (PT). PATIENTS AND METHODS: Patients with stage II or III, estrogen receptor-negative, HER2-positive breast cancer received four cycles of neoadjuvant PT. 18F-labeled fluorodeoxyglucose positron emission tomography-computed tomography was performed at baseline and 15 days after PT initiation (C1D15). Eighty evaluable patients were required to test the null hypothesis that the area under the curve of percent change in SULmax by C1D15 predicting pCR is ≤ 0.65, with a one-sided type I error rate of 10%. RESULTS: Eighty-eight women were enrolled (83 evaluable), and 85% (75 of 88) completed all four cycles of PT. pCR after PT alone was 22%. Receiver operator characteristic analysis of percent change in SULmax by C1D15 yielded an area under the curve of 0.72 (80% CI, 0.64 to 0.80; one-sided P = .12), which did not reject the null hypothesis. However, between patients who obtained pCR and who did not, a significant difference in median percent reduction in SULmax by C1D15 was observed (63.8% v 41.8%; P = .004) and SULmax reduction ≥ 40% was more prevalent (83% v 52%; P = .03; positive predictive value, 31%). Participants not obtaining a 40% reduction in SULmax by C1D15 were unlikely to obtain pCR (negative predictive value, 91%). CONCLUSION: Although the primary objective was not met, early changes in SULmax predict response to PT in estrogen receptor-negative and HER2-positive breast cancer. Once optimized, this quantitative imaging strategy may facilitate tailoring of therapy in this setting

    Measurement of the cross section for isolated-photon plus jet production in pp collisions at √s=13 TeV using the ATLAS detector

    Get PDF
    The dynamics of isolated-photon production in association with a jet in proton–proton collisions at a centre-of-mass energy of 13 TeV are studied with the ATLAS detector at the LHC using a dataset with an integrated luminosity of 3.2 fb−1. Photons are required to have transverse energies above 125 GeV. Jets are identified using the anti- algorithm with radius parameter and required to have transverse momenta above 100 GeV. Measurements of isolated-photon plus jet cross sections are presented as functions of the leading-photon transverse energy, the leading-jet transverse momentum, the azimuthal angular separation between the photon and the jet, the photon–jet invariant mass and the scattering angle in the photon–jet centre-of-mass system. Tree-level plus parton-shower predictions from Sherpa and Pythia as well as next-to-leading-order QCD predictions from Jetphox and Sherpa are compared to the measurements

    A search for resonances decaying into a Higgs boson and a new particle X in the XH → qqbb final state with the ATLAS detector

    Get PDF
    A search for heavy resonances decaying into a Higgs boson (H) and a new particle (X) is reported, utilizing 36.1 fb−1 of proton–proton collision data at collected during 2015 and 2016 with the ATLAS detector at the CERN Large Hadron Collider. The particle X is assumed to decay to a pair of light quarks, and the fully hadronic final state is analysed. The search considers the regime of high XH resonance masses, where the X and H bosons are both highly Lorentz-boosted and are each reconstructed using a single jet with large radius parameter. A two-dimensional phase space of XH mass versus X mass is scanned for evidence of a signal, over a range of XH resonance mass values between 1 TeV and 4 TeV, and for X particles with masses from 50 GeV to 1000 GeV. All search results are consistent with the expectations for the background due to Standard Model processes, and 95% CL upper limits are set, as a function of XH and X masses, on the production cross-section of the resonance

    Combination of searches for Higgs boson pairs in pp collisions at \sqrts = 13 TeV with the ATLAS detector

    Get PDF
    This letter presents a combination of searches for Higgs boson pair production using up to 36.1 fb(-1) of proton-proton collision data at a centre-of-mass energy root s = 13 TeV recorded with the ATLAS detector at the LHC. The combination is performed using six analyses searching for Higgs boson pairs decaying into the b (b) over barb (b) over bar, b (b) over barW(+)W(-), b (b) over bar tau(+)tau(-), W+W-W+W-, b (b) over bar gamma gamma and W+W-gamma gamma final states. Results are presented for non-resonant and resonant Higgs boson pair production modes. No statistically significant excess in data above the Standard Model predictions is found. The combined observed (expected) limit at 95% confidence level on the non-resonant Higgs boson pair production cross-section is 6.9 (10) times the predicted Standard Model cross-section. Limits are also set on the ratio (kappa(lambda)) of the Higgs boson self-coupling to its Standard Model value. This ratio is constrained at 95% confidence level in observation (expectation) to -5.0 &lt; kappa(lambda) &lt; 12.0 (-5.8 &lt; kappa(lambda) &lt; 12.0). In addition, limits are set on the production of narrow scalar resonances and spin-2 Kaluza-Klein Randall-Sundrum gravitons. Exclusion regions are also provided in the parameter space of the habemus Minimal Supersymmetric Standard Model and the Electroweak Singlet Model. For complete list of authors see http://dx.doi.org/10.1016/j.physletb.2019.135103</p
    corecore