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Abstract From a mathematical viewpoint, the study of morphogenesis focuses on

the description of all geometric and structural changes which locally orchestrate

the underlying biological processes directing the formation of a macroscopic shape

in living matter. In this chapter, we introduce a continuous chemo-mechanical ap-

proach of morphogenesis, deriving the balance principles and evolution laws for

both volumetric and interfacial processes. The proposed theory is applied to the

study of pattern formation for either a fluid-like and a solid-like biological system

model, using both theoretical methods and simulation tools.

1 Introduction

In developmental biology, morphogenesis can be defined as the ensemble of the

underlying biological processes directing the formation of a macroscopic shape in

living matter. Morphogenetic events span over a wide range of molecular and cellu-

lar mechanisms, often inter-playing for controlling events at individual or collective

level. Thus, the shape of an organism emerges over time as a morphological tran-

sition coordinated by these complex multi-scale interactions, revealing the intrinsic

dynamic nature of its driving forces. Indeed, from a mathematical viewpoint, the

study of morphogenesis focuses on the description of all geometric and structural

changes which locally orchestrate the occurrence of a global shape in living mate-
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rials. Accordingly, a mathematical model must consider the two most fundamental

processes during tissue development, namely growth and remodeling, intended as

the biological mechanisms determining any variation of the mass and of the micro-

structural organization, respectively [111]. Nonetheless, morphogenesis is by far a

more complex phenomenon, since these basic mechanisms often occur simultane-

ously, involving a cascade of inter-related developmental events from the molecular

to the tissue scale, provoked by either genetic and epigenetic causes [31].

It is therefore mandatory for a mathematical theory of morphogenesis to provide a

dynamic modelling of the morphology as a function of the interplay between geom-

etry and physical forces, as well as chemical and biomolecular cues. Moreover, the

suitability of a mathematical model should be evaluated not only for the accuracy

of reproducing the observed morphology in the dynamical fashion, but also for the

ability to identify the most relevant underlying causes, i.e causas alias ex aliis aptas

et necessitate nexas 1.

Before investigating in details the main building blocks for a suitable mathematical

modelling, we briefly make an overview about the development of the morpho-

genetic theories over the centuries, highlighting the path towards the contemporary

vision of morphogenesis and its most intriguing open challenges.

2 An historical overview of morphogenetic theories

The scope of this section is to provide an historical survey of the main events

concerning evolutionary theories and biological discoveries, from the ancient times

to the modern and contemporary approaches.

2.1 Epigenesis versus pre-formationism: from ancient times to the

advent of microscopy

Although it is known that Babylonians and Egyptians made an earlier use of ge-

ometrical calculations for structural purposes, the first application of geometry for

explaining the origin of a shape can be found in Euclid’s Elements (Book VI, def-

inition 3, ca.300 BC), where ”a straight line is said to have been cut in extreme

and mean ratio when, as the whole line is to the greater segment, so is the greater

to the less”. This definition highlighted a simple proportion already used almost

two centuries in advance by the sculptor Phidia, who seemingly used it to construct

the Parthenon’s statues. The possibility of using such a simple geometrical rule to

decrypt the harmony and symmetry behind several shapes commonly observed in

Nature still creates much fascination in our times, explaining the Medieval belief

1 In mathematical terms, this latin expression can be roughly translated as the set of the strictly

necessary causes (from Cicero, Rhetorica, Tusculanae Disputationes, Liber Quintus, 70).
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of a divine number. 2. Indeed, the theological doctrine of creationist prevailed for

almost two millennia, and shape was considered as a pre-ordered organization of

matter resulting from an act of divine creation. Opposed to such a pre-formationist

view, Aristotle had already proposed in his books Hystoria Animalium and De Gen-

eratione Animalium (ca.350 BC) the so-called epigenetic hypothesis, according to

which the growing tissues undergo after several steps of differentiation, forming

structures which were not present at the initial steps of life [6]. Such works were

mainly based on teleological concepts, but they reported an impressive number of

biological observations on embryos, although methodologically very far from a rig-

orous modern scientific approach.

Notwithstanding, the predominance of preformationism persisted until the 17th

Century, where the advent of microscopy techniques opened a scientific debate be-

tween epigenetists and preformationists about the nature of embryonic structures.

From one side, William Harvey retraced the Aristotelian ideas proposing the princi-

ple ex ovo omnia, i.e. that everything develops epigenetically from an egg [60]; on

the opposite side, Marcello Malpighi and Nicolaas Hartsoeker claimed that a minia-

ture structure of the adult organism, called homunculus, was present in the egg from

the very beginning, and that the gestation period involved the growth and unfolding

of that pre-existing structure [1, 59].

Few decades in advance, Galileo Galilei had hinted that the shape of organisms was

somehow influenced by the load that they have to hold, proving that the changes in

size of bones over mammals are actually governed by allometric scaling [47]. This

seminal idea of mechanical causation would still take almost two centuries before

influencing the scientific view of morphogenesis.

2.2 The birth of modern embryology: evolutionary theories and

mechanical causation

The 19th century was dominated by Darwinism and the advent of genetics, but

also by the theory that plants and organisms are made of cells, and that reproduction

is governed by cell division, according to the principle omnis cellulae ex cellula pro-

posed by Rudolf Virchow [116]. Furthermore, the technical progress in microscopy

determined the birth of the modern experimental embryology. Inspired by Darwin-

ism, Ernst Haeckel proposed the recapitulation theory, claiming that the develop-

mental steps of embryonic growth would be a reflection of the adult evolution of

their ancestors [55]. This biogenetic law formulated that ontogeny (i.e. the devel-

opment of an individual organism) recapitulates phylogeny (i.e. the evolution of a

species). Although immediately rejected by Wilhelm His, who showed with experi-

ments that the gut tube morphogenesis could be modeled by a mechanical causation

principle [93], this biogenetic theory prevailed in the scientific community until

2 This idea was enforced by Luca Pacioli, a student of Leonardo da Vinci, in his book De divina

proportione, published in 1509
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the works of Wilhelm Roux towards the end of the 19th century. In particular, he

shifted the focus of developmental biology from evolution (i.e. the final purpose)

to the underlying mechanisms (i.e. the causes), performing several experiments on

embryos in order to investigate the self-differentiation [100]. Although some of his

deductions were incorrect [56], Roux inspired a new approach in experimental em-

bryology, giving seminal results about regulation, i.e. the ability of the the embryo

to develop normally even if a part of it is removed, as well as induction, i.e. the

influence of a cell or a tissue on the development of another. Interestingly, a defini-

tive confirmation of the latter phenomenon had to wait till 1924, when Spemann and

Mangold transplanted part of the embryonic tissue from a amphibian into an embryo

of a different amphibian species [107]. They observed that a partial second embryo

developed from the transplanted tissue: the hosting tissue induced the development

of the hosted tissue.

Roux also extended the investigation about the mechanical causation of develop-

ment establishing the concept of functional adaptation as a principle for dependent-

differentiation: cells and tissues respond to change in external conditions in order

to preserve their global organization and functions. Accordingly, any tissue would

adapt under the action of external forces, regulating its growth order to preserve

lightness and structural robustness.

This fundamental principle contributed to the development of modern physiology,

which considers that all life phenomena result from the mutual balance between

the living matter and the surrounding media. In the same period, indeed, Claude

Bernard first hypothesized that such a dynamic equilibrium might regulate living

organisms despite the structural complexity of the constituting matter [10]. Initially

focusing on anatomical- biochemical and symphato-adrenal stimuli, novel experi-

ments highlighted the stable equilibrium be- tween the interior matter of a living

entity in the face of external perturbative agents. Accordingly, this physiological

tendency towards a steady state was later called homeostasis, and later found to

drive the optimal structural remodelling of both bone to mechanical loading, also

known as Wolff’s law [118], and arterial endothelia to shear stress, also known as

Murray’s law [90].

2.3 The contemporary approches to morphogenesis

The 20th century has been particularly rich in crucial discoveries and scientific

contributions to the understanding of morphogenesis. In particular, mathematical

modelling emerged as a In particular, the first half of the century was characterized

by the introduction of mathematical modelling to investigate the relations between

the physical forces exerted by the surroundings and the steady generation of shapes.

The second half was instead dominated by the many astonishing discoveries in ge-

netics and molecular biology, shifting the research focus to the dynamical aspects

of morphogenesis.
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2.3.1 The first mathematical approach on growth and form

In 1917, D’Arcy Wentworth Thompson published his masterpiece and only sci-

entific book, entitled On growth and form [112], a compendium of more than a thou-

sand pages, written in wartime, about the use of mathematical theory to describe the

shape of living organisms.

While other contemporary scientists focused on experimental analysis, D’Arcy

Thompson’s investigations were purely based on mathematical background. Being

skeptical about a morphogenetic analysis based on evolution theories and natural se-

lection, which were still dominant in the scientific community at that time, his orig-

inal idea of morphogenetic development was instead focused on the role of physical

forces in shaping organisms. The following quote from the Introduction section is

fully explicative in this sense:

It is retained, somewhat crudely, in modern embyology

[...]that the embryonic phenomena must be referred directly

to their usefulness in building up the body of the future animal

which is no more, and no less, to say, with Aristotle,

that the organism is the τελ oς , or final cause,

of its own processes of generation and development.

[...] Still, all the while, like warp and woof, mechanism and teleology

are interwoven together, and we must not cleave to the one nor despise the other;

for their union is rooted in the very nature of totality.

Accordingly, the book investigates mechanical causation in the generation of

many shapes in living matter, dealing with living organisms as material bodies sub-

jected to physical forces and obeying to simple physical and geometrical laws. An

illustrative example of the originality of D’Arcy Thompson’s approach can be found

in the second chapter of his book, where he focused on the physical scaling effects

on the shape of animals of different sizes, complementing Galileo’s first observa-

tions on allometric laws. He proved that, whilst big animals must have strong and

heavy structures which allow to sustain the bulk gravitational load, the shapes and

structures small animals can be calculated from a principle of functional adaptation

to surface forces, e.g. surface tension. Furthermore, he proposed a grid transfor-

mation method, aimed at showing that physical forces can shape a living organism

during either growth or evolution, as depicted in Figure 1. D’Arcy Thompson’s work

had a seminal influence on modern biomechanics and his book is still read and pub-

lished in reduced and revised versions. In between many other examples, it was a

source of inspiration for the Huxley’s work on allometric growth [67] as well as for

Gould’s mechanistic theory of shape from an evolutionary viewpoint [51].

2.3.2 The chemical bases of morphogenesis

The fast development of experimental techniques in biochemistry promoted an

increasing attention to the chemical and molecular mechanisms underpinning mor-
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Fig. 1 Left: Transformation grid applied to the shape transformation of a small amphiopod (a)

Harpinia Plumosa into the shapes of two other genera belonging to the same family (b) Stego-

cephalus Inflatus, and (c) Hyperia Galba), adapted from [29]. Right: Transformation grid applied

to the growth of a skull in human foetus. In both examples the transformation is achieved by ap-

plying physical forces on the considered structure, during evolution and growth respectively.

phogenetic processes. A new branch of applied mathematics especially focused on

the description of pattern formation, i.e. the emergence of organized living struc-

tures in space and time. A milestone in biomathematics is the paper by Alan Tur-

ing on the chemical bases of morphogenesis, published in 1952 [114]. Although

it was his only contribution on morphogenesis, it is an extraordinary innovative

work, especially since it proved how a mathematical theory could actually antici-

pate biological discoveries. Turing proposed a reaction-diffusion model of at least

two chemical species which undergo chemical reaction within a living material: in

order to highlight their role in generating a new pattern, he called them morphogens.

They practically act biochemical substances enabling certain shape control abilities

in the embryonic tissue, closely resembling the evocators earlier hypothesized by

Waddington [117]. In the absence of diffusion, the biological system is in a stable

state defined by homogeneous concentrations of the two reactants. Under certain

range of values of the reaction and diffusion parameters, an instability occurs and

a stable non-homogenous pattern arises. This was counter-intuitive result since it

was thought that diffusion would rather introduce a chaotic behavior in the system,

instead of generating an organized pattern.

In particular, Turing’s model predicted the existence of six possible steady-states

as shown in Figure 2. The uniform stationary (I) and oscillatory (II) states, the short

wavelengths stationary (III) and oscillatory (IV) states and the finite wavelength sta-

tionary (V) and oscillatory (VI) states. Of particular interest is the Case VI, which
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Fig. 2 Turing’s reaction-diffusion model: (a) Examples of the six stable states solutions of Turing’s

model. (b) The so-called Turing’s pattern is depicted as the Case VI where a stationary wave of

finite wavelength develops. (C) Reproduction of biological patterns created by modified reaction-

diffusion mechanisms. Adapted from [73].

occurs when the diffusion coefficients of the two morphogens differ substantially

and initiate the so-called short-range activation, long-range inhibition [48] mech-

anism. The two morphogens are seen as an activator and an inhibitor, respectively,

which can act on themselves as well as on the other. A small perturbation in the ho-

mogeneous concentration can induce an increase in the activator concentration and

initiate the feedback which lead to the formation of one of the Turing’s patterns in

Figure 2 (b).

Turing’s model has later been largely employed for modeling the emergence of sev-
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eral patterns in vertebrates such as the stripes in the zebra-fish pigmentation [72],

the branching pattern in feathers [58], but also the fabulous seashell patterns [95]

and the mechanism of plant phyllotaxis, i.e. the arrangement of leaves on a plant

stem [106].

Nonetheless, Turing’s work did not receive a great attention in the years right after

its publication. Indeed, the problem of emergence of organized cellular patterns in

the tissue was brought back to the attention of developmental biologists only in the

1970s, when Lewis Wolpert introduced the concept of positional information (PI).

The main idea of Wolpert is that the position of a cell in the tissue specifies the

information about the molecular changes the cell will undergo [119]. In this sense,

morphogens act convey both positional information and growth orchestration prop-

erties. The key elements of Wolpert’s theory can be summarized in the definition

of:

• A mechanism which specifies the polarity in the tissue. Polarity is the direction in

which PI is specified and is defined with respect to one or more reference points.

• A mechanism for specifying the different responses of the cell.

PI can be specified by a quantitative variation of some factor such as the concen-

tration, or a qualitative variation of some cell parameters such as a combination of

genes or enzymes. A set of cells which have their PI specified with respect to the

same reference points constitutes a field. Interpretation of PI is the process by which

PI specifies the cell state and conversion is the mechanism by which PI is translated

in a particular cellular activity. Furthermore, PI is universal in organisms and size

invariant, meaning that if a part of the tissue is removed, the tissue is still able to

pattern and interpret the PI.

The concept of positional information is well clarified in the French flag model de-

picted in Figure 3. In this example, the mechanism which specifies polarity is the

monotonic variation of the morphogen concentration C. T1 and T2 identify the mech-

anism for the differential response of the cells. The interpretation acts according to

the following rule: cells with position in the region where C < T1 express the blue

pigment, a cell in the region where T1 < C < T2 expresses the white pigment and

cells in the region where C > T2 express the red pigment. This apparently simplistic

model was later confirmed by experimental observations on the early Drosophila

embryo, where the concentration gradient of the protein Bicoid (i.e. a transcription

factor, being the first molecules found to act as a morphogen in 1988 [36]) drives an

antero-posterior differentiation in three separated domains [69].

The models proposed by Turing and Wolpert offer two different points of view

on pattern formation. A first difference comes from the fact that Turing aimed at

modeling spontaneous formation of a pattern, while Wolpert asked how a more

complex pattern can arise from an asymmetry (i.e. polarity) within the tissue. Fur-

thermore, in Turing’s model the concentration of morphogens is directly related to

the spatial pattern, in this sense it is a pre-pattern. Conversely, Wolpert introduced

an interpretation step where the cell activity is specified by the concentration gra-

dient. Moreover, Wolpert himself later argued that morphogenetic movements are

rather determined by other transport mechanisms than passive diffusion, such as pla-
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Fig. 3 The French Flag model: positional information is specified by the gradient of a morphogen

concentration. Adapted from [68].

nar transcytosis and cytonemes [120]. Moreover, morphogens should be generally

subjected to fluctuations on short length-scales whilst travelling through individ-

ual cells, yet finally delivering precise positional information. Without discussing in

further details such limiting aspects, it is now generally accepted that more compli-

cated morphogenetic models are needed in the wide scenario of embryogenesis. For

example, recent works have proposed a different mechanism through which the two

models can cooperate in pattern formation [52].

2.3.3 The new course of genetics and the return of an ancient dichotomy

Although the origins of genetics date back to the second half of the 19th Century,

when Gregor Mendel discovered the inheritance of biological traits [88], its funda-

mental role in morphogenesis finally emerged only during the 20th Century [121].

Indeed, the earlier vision of genetics uniquely concerned studying the transmission

of hereditary properties in the embryo, since Mendel’s theory was based on the

idea that the hereditary package is transmitted from parents to offspring through a

set of discrete hereditary factors. Although proved by experimenting on pea plants,

Mendel’s theory was unable to provide any concrete description of the nature of

such factors. A breakthrough occurred with the discovery that the DNA carries the

genetic information and that genes encode proteins. Thus, the properties of a cell

are determined by the proteins they contain, genes control and act on proteins in

order to drive the cell fate and consequently, the development of a shape. Right after
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these discoveries, a lot of experiments focused on finding the genes responsible for

several morphogenetic events in the embryo. The strategy adopted was to introduce

changes in the molecular organization of the DNA in order to observe abnormal

changes in a final structure. In this way, it has been possible to identify which genes

play an active role in the formation of an emerging pattern.

These novel discoveries puzzled researchers about the genetic bases of morpho-

genesis. Interestingly, the ancient dichotomy between pre-formationism and epige-

nesis rephrased in a modern key, whether the the shape of an organism emerges as a

results of a set of fixed genetic instructions or it can be influenced by environmental

factors, both at the individual level and during evolution.

Even if many open questions exist in the rapidly developing research branches of

morphogenesis, it is now acknowledged that both the genetic and the epigenetic

factors influence shape at different levels [7]. In the absence of mutations, each cell

within a given organism has the same set of genes, called genotype, whilst only a

small subset is expressed as a function of the environment, defining the phenotype.

Therefore, the epigenetic adaptation can occur both at the level of individual organ-

ism as a change of phenotype and at the evolutionary level as a switch of ontogenic

programs [2]. In summary, it is now clear that the morphogenetic processes (e.g.

cell division and differentiation) are driven by genetic signals, as well as that the

genetic expression involves epigenetic processes by means of morpho-regulatory

biomolecules, that interact with genes through a complex network of feedback reg-

ulatory mechanisms [38].

2.4 The open quest for the chemo-mechanical cues of

morphogenesis

Nowadays, there is an increasing research interest in life sciences concerning the

biomolecular mechanisms directing the adaptation of living matter to the physical

forces exerted by the surrounding micro-environment. The ensemble of biologically

processes converting mechanical forces into biochemical factors is called mechano-

transduction. This is a typical multi-scale phenomenon, since living cells may sense

from nano-scale to macroscopic forces often driving the transition from physiolog-

ical to pathological conditions [37]. The nano-scale force transduction occurs by

means of cell membrane molecules, typically focal adhesion proteins and integrins,

converting the mechanical stimulus into a change of membrane potential through

the formation of a ionic current. In physiological condition, a feedback mechanism,

known as mechano-reciprocity, acts for activating the acto-myosin machinery in or-

der to restore a tensional homeostasis at the macro-scale (e.g. tissue), i.e. globally

balancing endogenous and exogenous forces. Conversely, a loss of tensional home-

ostasis often characterizes a hallmark of disease, e.g. directing both the initiation of

solid tumours and the formation of metastasis [15].

Mechano-transduction plays a fundamental role in the modern view of morphogen-

esis, since it allows the regulation of epigenetic and genomic factors at different
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time-scales. In fact, it control the dynamic adaptation of living cells by means of

both switch-like events at their trans-membrane structures [122] and the activation

dynamic molecular processes in response to long time-varying mechanical stimuli

[61]. Many seminal experiments highlighting the crucial role of chemo-mechanical

cue in morphogenesis have been performed in the last decades by the research group

lead by Lev Beloussov. In particular, these works have reported that the active re-

sponses of living matter may overshoot the passive mechanical stimuli, proposing

a hyper-restoration principle for homeostasis [8]. Another open area of investi-

gation concerns the identification of the local regulation mechanisms, mainly sig-

nalling pathways that spatially and temporally control cell behaviour, which allow

the global orchestration of a macroscopic shape [76]. Therefore, the current under-

standing of morphogenetic events gained a further complexity in the underlying phe-

nomena with respect to the purely chemical bases earlier assumed. For example, the

local concentration of morphogens can trigger growth as a random cellular prolif-

eration. Nonetheless, polarity can induce preferred orientations in cellular division,

possibly affected also both by competition between different cell populations and by

physical forces, e.g. growth inhibition by compression [78]. At a more macroscopic

level, unknown chemo-mechanical orchestration mechanisms should transform ran-

dom or oriented local proliferations into a uniform growth, which must ultimately

cease as the final size is reached. Thus, the morphological control may depend on

both the cell number and the overall size, suggesting that the spatial gradient of mor-

phogens can provide cells a dimension-sensing mechanism.

The quest for the chemo-mechanical cues in morphogenesis is therefore a manda-

tory step for the development of refined mathematical theories [66]. This was some-

what hinted by Turing himself in his original paper:

In the continuous form of the theory [..] one should take into account

(i) The changes of position and velocity as given by Newton’s laws of motion.

(ii) The stresses as given by the elasticities and motions[...].

(iii) The chemical reactions.

(iv) The diffusion of the chemical substances[...].

This account of the problem omits many features, [...] but even so it is a problem of

formidable mathematical complexity. The interdependence of the chemical and

mechanical data adds enormously to the difficulty [...].

Well aware of such unavoidable complications, we will sketch in the next section

the balance laws for a continuous theory of morphogenesis, using the thermody-

namics of open systems to take into account for the chemo-mechanical coupling.

3 A continous chemo-mechanical theory of morphogenesis

The thermo-mechanics of open systems is a natural framework for a macroscopic

mathematical description of morphogenesis in living matter, which is hereafter con-

sidered as a continuous distribution of matter. Accordingly, we disregard the micro-
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scopic dynamics of the underlying biological phenomena acting at the subcellular or

cellular level, and we model the relevant chemo-mechanical properties by averaged

fields at the tissue scale. In the following, we provide some basic kinematic notions

and we derive the physical balance laws that govern the morphogenetic processes

within living matter as a function of both the mechanical and the chemical cues.

3.1 Basic kinematic notions

Denoting by E ⊂R
3 be a three-dimensional Euclidean space, let B0,Ba ⊂ E be

two regions occupied by the living body in two different instants of time. Let χ be

the mapping which transforms the tissue from its initial configuration B0 to its final

configuration Ba, which can be defined as the following C 1-diffeomorphism:

χ : B0 → Ba x = χ(X), with inverse X = χ−1(x) (1)

where X, x are the position vectors in the reference and actual configurations B0

and Ba, respectively. The deformation gradient, associated to the deformation in

Eq.(1), is the second order two-point tensor defined as:

F : TB0 → TBa F = Gradx =
∂ χ(X)

∂X
=

∂xi

∂X j
ei ⊗E j, (2)

where E j,ei (with i, j ∈ {1,2,3}) are the basis unit vectors in the reference and

actual configurations, respectively, and TB0,TBa are the collections of all tangent

spaces on B0 and Ba, respectively. A tangent space is the set of all line elements

attached to a body point. The capital notation Grad in Eq.(2) indicates the gradient

operator with respect to the material position X j in the reference configuration B0

and the symbol ⊗ indicates the dyadic product between two vectors, in indicial form

: (a⊗b)αβ = aαbβ .

According to Eq. (2), the following relations for the transformation of line, surface

and volume elements, respectively, hold:

dx = FdX (3)

nds = JF−T NdS (4)

dv = JdV (5)

where J = detF and the quantities dX,NdS,dV and dx,nds,dv are defined in the

reference and actual configurations, respectively, with N and n being the unit nor-

mal vectors to dS and ds, respectively. Eq. (5) can be directly derived from Eq. (3),

while Eq (4) is also known as Nanson’s Formula.

Before deriving the thermo-mechanical laws for a morphogenetic process, it is use-

ful to introduce some relations that will be used in the following.

Let f(x, t) be a continuously differentiable spatial vector field, its total time deriva-
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tive writes as:

ḟ(x, t) =
df(x, t)

dt
=

∂ f(x, t)

∂ t
+ v(x, t)grad f(x, t), (6)

Moreover, considering the integral of the spatial field f on a volume changing with

time, the Reynolds theorem allows for the time derivative to be calculated as:

d

dt

∫

Ba

f(x, t) dv =

∫

Ba

[ḟ(x, t)+ f(x, t)divv(x, t)] dv, (7)

where v(x, t) is the spatial velocity, and div is the spatial divergence operator. More-

over, we will use the divergence theorem in the form :

∫

∂Ba

n · f(x, t) ds =

∫

Ba

div f(x, t) dv, (8)

so that div(f) = fih,i for any given tensor field f, assuming saturation on repeated

indices unless explicitly stated.

3.1.1 Balance of mass

Since morphogenetic processes usually involve growth and remodelling, let us

first derive the mass balance for a living material as a function of the biochemical

factors [40, 26]. The global form of the mass balance for a growing body X in spatial

coordinates reads:
d

dt

∫

Ba

ρ dv =

∫

Ba

ω dv (9)

where ρ is the spatial mass density and d/dt denotes the total time material deriva-

tive. Accordingly, ω is the internal mass production rate per unit current volume,

and we neglected any non-convective mass flux for the sake of brevity. The inter-

ested reader is referred to [39] for the introduction of mass self-diffusion terms.

The mass production rate represents the cellular proliferation within the material

which is possibly driven by some biochemical fields, e.g. growth signals, nutrients,

morphogens. Indicating with ci(x, t) the concentration of the generic i− th species

per unit volume, we can generically assume that ω = ω(ci,F). Moreover, since we

deal with signals or low weight molecules, such species can me modeled as internal

variables with negligible inertia [21], having the following balance laws:

d

dt
ci − div Jci =−ξi(F,GradF) (10)

where ξi is the absorption rate of the i−th species, whose value may depend both on

the first and on the second gradient of the deformation field, the latter reproducing,

for example, curvature-dependent effects in the absorption of angiogenetic factors

[80]. The diffusion of a morphogen from the source through the extracellular matter,
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with a sink function possibly regulated by receptor endocytosis, has been proved

to describe the morphogens gradient in multicellular embryonic tissues [123]. As

discussed in [4], the simpler expression for the flux of nutrients Jc is given:

Jci = D(ci)J gradci (11)

where D(ci) represents a diffusion tensor, whose positive definiteness and mono-

tonicity on ci ensure the stability of the solution.

The local spatial form of Eq.(51), can now be easily derived by substituting Eq.(7)and

permuting integration and differentiation, being:

ρ̇ +ρ divv = ω(ci,F), (12)

where the dot symbol indicates the total time derivative defined in Eq.(6). For prob-

lems involving solids, it is useful to derive its material counterpart using a similar

procedure after recasting Eq.(51) in the reference volume. It reads :

ρ̇0 = Ω . (13)

where ρ0 = Jρ is the material density and Ω = Jω is the internal mass production

rate per unit reference volume.

In summary, Eqs.(12,13) are the mass balance laws of biological material during a

morphogenetic process guided by the reaction diffusion Eq.(10). We remark that the

driving chemo-mechanical cues will be defined by the proper constitutive choices

of the coupling terms ω and ξ .

3.2 Balance of linear and angular momentum

Let us first consider the balance of the physical linear momentum p = ρv inside

the biological system. Its conservation law in the global form rewrites:

d

dt

(

∫

Ba

pdv

)

=
∫

Ba

(ρbv +ωv)dv+
∫

∂Ba

n.σds (14)

where σ is the Cauchy stress tensors , and bv is an external bulk force. Substitut-

ing Eq.(12) while developing the integral terms in Eq.(14), we obtain after some

standard manipulations the following local form in the spatial configuration:

ρ
dv

dt
= ρbv + divσ (15)

In order to derive the material counterpart of Eq.(14), let us substitute the Nanson’s

formula in Eq.(4), so that:

D

Dt

∫

B0

ρ0v dV =

∫

∂B0

N.S dS+

∫

B0

(ρ0bv +ωv) dV (16)
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where the volume element transformation in Eq.(5) and the relation in Eq.(12) have

been used. The stress tensor S in Eq.(16) is called the Nominal stress and is related

to the Cauchy stress by S = JF−1σ 3. Thus, its local form in material coordinates

reads:

ρ0
dv

dt
= ρobv +DivS (17)

where Div is the material divergence.

Furthermore, the global form of the angular momentum balance in presence of

growth can be written in spatial coordinates as:

D

Dt

∫

Ba

y×ρv dv =

∫

∂Ba

y×σn ds+

∫

Ba

y× (ρbv +ωv) dv (18)

where × is the cross product and the position vector y has been introduced as y =
x− x0 with x0 being a fixed vector position. Using the Reynolds theorem in Eq.(7),

the l.h.s of Eq.(18), rewrites:

D

Dt

∫

Ba

y×ρv dv =

∫

Ba

[y× (ρ̇v+ρ v̇)+ (y×ρv)divv] dv (19)

where the second equality follows from ẏ = ẋ = v and the product differentiation

rule of the cross product.

Using the divergence theorem in Eq.(8) and the properties of the cross product, the

first term in the r.h.s of Eq.(18) transforms into the volume integral:

∫

∂Ba

y×σn ds =

∫

Ba

[y× divσ +E : σT ] dV (20)

where E = ε jkle j ⊗ ek ⊗ el is the third-order permutation tensor with components

ε jkl = (e j × ek) · el . Now, using the mass balance in Eq.(12), the balance of linear

momentum in Eq.(15) and substituting Eqs.(19,20) into Eq.(18), it follows that:

∫

Ba

E : σT dV = 0 (21)

whose local eulerian form is:

σ = σT (22)

with material counterpart:

FS = ST FT (23)

Hence, the Cauchy stress tensor σ must be symmetric whilst the Nominal stress S is

not. In the following, we will derive the thermodynamic principles for the growing

biological system.

3 Since S is related to σ through a Piola transformation, it is often called first Piola-Kirchooff

stress tensor [87]. Nonetheless, some authors consider the latter being the transpose of S [91].

Accordingly we prefer to call it nominal stress in order to avoid misunderstanding to the readers
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3.3 Balance of internal energy and entropy inequality

Following the approach in [40], let us indicate with ε the internal energy per

unit mass and with µi a scalar function representing the source of internal energy

associated with the i− th solute ci. Accordingly, the global form of the first law of

thermodynamics can be expressed as follows:

d

dt

∫

Ba

ρεdv =
∫

Ba

(ωε − ξiciµi + r0 + tr(σd))dv+
∫

∂Ba

n.(µiJci −Q)ds (24)

were d = (gradv+(gradv)T )/2, r0 is the external heat supply per unit of volume,

Q is the heat flux, µi is the chemical potential of the i-th species and represents the

increase of internal energy of the continuum by physical absorption of the diffusing

chemicals. Irreversible terms and a temperature gradient dependence have been ne-

glected for the sake of simplicity. Substituting Eqs.(10,12, 15) in Eq.(24), we obtain

the following local form for the balance of the internal energy in a growing material:

ρε̇ = tr(σd)+ µiċi − divQ+ r0 + Jci.grad µi (25)

The global form of Clausius-Duhem entropy inequality reads:

d

dt

∫

Ba

ρ0η dv ≥
∫

Ba

(

ωη −ηiξiċi +
r0

Θ

)

dv+

∫

∂Ba

n.

(

Jciηi −
Q

Θ

)

ds (26)

where η ,ηi are the entropy density per unit mass and per unit of solvent concentra-

tion, respectively. The local form of the entropy inequality, substituting Eq.(12) in

Eq.(26), reads:

ρη̇ ≥ ηiċi + Jci.gradηi +
r0

Θ
− div

(

Q

Θ

)

(27)

Recalling the expression of the Helmholtz free energy per unit of mass, Ψ = (ε −
Θη), and per unit of solvent concentration, Ψi = (µi −Θηi), we can put together

Eqs.(25, 27) in order to obtain an equivalent form of the entropy inequality:

ρ(Ψ̇ +Θ̇η) ≤ tr(σd)+Ψiċi + Jci · (∇RΨi +ηi∇RΘ)− Q

Θ
·∇RΘ (28)

The latter inequality describes the thermodynamical consistency for the energy dis-

sipation during a morphogenetic process, accounting both for mass production and

for the reaction-diffusion of the biochemical species. Once defined the constitu-

tive equation for the stresses, Eq.(28) allows defining a suitable chemo-mechanical

coupling regulating the evolution of the biological system. An extension of the pre-

sented thermo-mechanic framework to strain gradient continua can be found in [22].
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3.4 Balance laws for interfacial morphogenetic processes

Morphogenetic processes can occur at different scales, which are governed by

the typical lengths characterizing the local interplay between mass production and

the reaction- diffusion properties of biomolecules. For example, cells duplicate in-

side narrow regions created by the diffusion fronts of morphogenetic signals, whilst

a macroscopic remodelling occurs in order to reach an homeostatic state at the tissue

level [77]. It is therefore useful to extend the balance laws derived in the previous

paragraphs to the case in which the bulk mass changes are localised into a small

volume. For the sake of clarity, let us consider a biological system made by two dif-

ferent materials occupying growing adjacent regions V−(t) and V+(t) , separated

by the moving surface Σ(t) with outer normal nΣ . Such surface will be considered

as a non-material interface [28], i.e. carrying thermo-mechanical properties, and de-

scribed using a local parametrization expressing its spatial position as x = x(u1,u2),
with tangent bases al = x,ul with l =(1,2). The parametric velocity v̄Σ of the surface

can be decomposed as:

v̄Σ = v̄Σs + v̄Σn nΣ (29)

where v̄Σs is assumed to correspond to the projection of the physical velocity on

the surface, whose value depends on the parametrization. Moreover, every a point

on Σ(t) has a physical velocity vΣ , and we assume the compatibility condition

vΣs = v̄Σs. In the following the superscripts − and + will be used for indicating

the physical fields inside the volumes having outer normal n−=−n+=nΣ , respec-

tively. The volumetric physical fields must obey the balance principles previously

derived.

Morphogenetic processes occur in a very narrow layer of thickness ε , defined as:

∆Vε =
⋃

(x+νnΣ) ; ∀ x ∈ Σ(t), −ε/2 ≤ ν ≤ ε/2 (30)

so that we can obtain surface fields on Σ(t) by homogenization of the volume fields,

calculating their finite limit for ε → 0. Indicating with the subscript Σ such interfa-

cial physical fields, we can therefore derive the mechanical balance laws and write

the thermo-dynamic principles for the entire system. Dealing with a moving dis-

continuity, we define the Thomas derivative as
δt (·)
δt t

= ∂ (·)
∂ t

+ v̄ΣnnΣ .∇(·), and we

introduce the jump operator J·K = (·)+− (·)−.

For matters of generality, we assume that generic mass fluxes m− and m+ may exist

between the volumes and the moving interface 4. Therefore, by applying the trans-

port and divergence theorems in a system with a non-material discontinuity [99],

the surface mass balance takes the following form:

δt ρΣ
δt t

+ divΣ .(ρΣ vΣs)−KρΣ v̄Σn = ρΣ ωΣ + Jρ(v̄Σn − vn)+nΣ .mK (31)

4 We remark that for Galilean invariance they should be somehow dependent on a relative velocity

field.
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where divΣ · is the surface divergence, K is twice the local mean curvature, vn is the

normal component of the physical velocity and ωΣ is the surface mass source.

Using eq.(31) and neglecting surface external forces, the balance of linear momen-

tum on Σ(t) reads:

ρΣ
δt vΣ
δt t

+(ρΣ vΣs.gradΣ )vΣ = divΣ .σΣ+

J(v− vΣ)(ρ(v̄Σn − vn)+nΣ .m)+nΣ .σK (32)

where σΣ is the Cauchy stress tensor acting on the surface. We remark that eq.(32)

generalizes the Young-Laplace law for a growing non-material interface.

The balance of angular momentum on the surface reads:

al .σΣ × al = 0 l = (1,2) (33)

where × is the cross-product and al indicate the reciprocal tangent bases. Thus, σΣ

must be a tangential field on Σ(t) with symmetric surface components.

The first and second laws of thermodynamics after standard manipulations rewrite:

ρΣ ε̇Σ = al .σΣ .gradΣ vΣ − divΣ . QΣ + rΣ

+JnΣ .σ .(v− vΣ) +
(

(v−vΣ )
2

2
+ ε − εΣ

)

(ρ(v̄Σn − vn)+nΣ .m)−nΣ .Q
z

(34)

ρΣ η̇Σ ≥ rΣ

Θ
−∇.

(

QΣ

Θ

)

−
s

nΣ .(
Q

Θ
+ Q̄) −(η −ηΣ )(ρ(v̄Σn − vn)+nΣ .m)K

(35)

where Q̄ represents a bulk extra-entropy flux, whose jump may represent the transfer

of biochemical energy within the interface. Putting together eqs.(34,35) and defining

a surface free energy ΨΣ per unit mass, the dissipation inequality on the surface can

be written as:

ρΣΨ̇Σ ≤ al.σΣ .vΣ ,l + JnΣ .σ .(v− vΣ) −ΘnΣ .Q̄

+
(

(v−vΣ )
2

2
+Ψ −ΨΣ

)

(ρ(v̄Σn − vn)+nΣ .m)
z

(36)

where we assumed isothermal, uniform conditions for matters of notation compact-

ness. In particular the quantity between the bracket operator represents the flux of

the chemo-mechanical energy flux vector, i.e. a generalization of the Poynting vec-

tor for the moving non-material interface. In summary, once defined the constitutive

equation for the surface stress, the dissipation inequality in eq.(36) allows defining

thermodynamically consistent evolution laws for the interfacial morphogenesis.

An application: morphogenesis of seashells Let us consider the proposed thermo-

mechanical model of interfacial growth to describe the morphogenesis of seashells

[27]. As accurately investigated by D’Arcy Thompson [112], seashells also display

a great variety of shapes and patterns, often characterized by a self-similar geometric

structure, following a logarithmic (equiangular) helico-spiral.
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The growing shell is generated by a tongue-like protrusion of the mollusc, known

as the mantle, which wraps around the grown shell edge for depositing both new

material and pigments. The surface growth process here occurs at a moving surface

Σ(t) at the edge of the shells, and the secretion velocity is found to be controlled

by the neural system of the mantle [12]. Indeed, the position ρ(θ )=
√

x2 + y2 + z2

of the mantle can be expressed in a logarithmic helico-spiral as a function of the

turning angle θ , reading:







x = ρ0sinβ cosθ eθcotα

y = ρ0sinβ sinθ eθcotα

z = ρ0cosβ eθcotα
(37)

where β is the enlarging angle and α the wrapping (equiangular) angle of the spiral,

as shown in Figure 4(a). In practice, if R =
√

x2 + y2, the components of the mantle

velocity are linked by the following relation: ż tanβ = Ṙ.

Considering a moving reference framework whose origin represents the mantle

position, the deposition of new material is modeled to occur on a generating curve

on the moving surface Σ(t), which has unit vectors ez and eρ = excosθ + eysinθ .

The volumetric mass balance equation in Eq.(??) for the shell imposes:

ρ− divv− = 0 (38)

where ρ− is the constant volume density of the fabricated material. Choosing a

generating circular section for the sake of simplicity, its outer radius r(θ ) can be

given on a polar parametric representation (r,s) on Σ(t). If the mantle deposit a

surface mass source γΣ , a solution of the the surface mass balance in Eq.(??) is

given by:

m− = [ρ−(v−− v̄Σ) · en]en; divΣ .v̄Σs = γΣ ⇒ r(t) = r(0)e
γΣ t

2 (39)

with en = ez ∧ eρ being the normal unit vector of the growing surface, setting

v̄Σn = (v̄Σ ·en) = ρ(θ )θ̇ in virtue of Eq.(37). Moreover, the parametrization is cho-

sen such that the Σ(t) moves with the center of mass of the growing mass, i.e.

v̄Σn = vΣn. Under these assumptions, Eq.(36) ensures that the seashell growth is

thermodynamically consistent.

The shell morphology depends on the combination of the helico-spiral movement

of the mantle, through the angles α,β in Eq.(37), and the displacement of the edge

radius, given by the surface mass source γΣ in Eq.(39). Assuming that the spiral

velocity of the mantle is constant, so that θ̇ = m, we can impose that the growing

material is always deposited tangentially to the shell, reading:

ρ(θ + 2π)−ρ(θ ) = r
(

θ+2π
m

)

+ r
(

θ
m

)

;

ρ0 eθcotα
(

e2πcotα − 1
)

= r(0)e
γΣ θ
2k

(

e
γΣ π

m + 1
) (40)
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Fig. 4 (a) Parametric description of the growing seashell: the generating line is given by the mantle

position ρ(θ ) along a helico-spiral (blue line), while new material is deposited on a circular border

with radius r(θ ) (red circles).(b) Picture of the seashell turritella communis (b) and its simulated

morphology (c). The simulation is performed using Eqs.(38- 41), setting the values v− = 0,β =

4o,α = cot−1
(

log
(

1+sinβ
1−sinβ

)

/2π
)

= 87.72o,m = 1,γ = 2mcotα = 0.044.

The proposed model is applied to describe the shape of Turritella communis), a

marine gastropod of the family of the Turritellidae, depicted in in Figure 4(b) . Its



Mathematical modeling of morphogenesis in living materials 21

peculiarity resides by the fact that its coiling edge keeps tangent to the z axis, so that

ρ(θ ) = r(θ/k)sinβ .

This geometrical property, used in combination with Eq.(40), allows a correlation

between the movement of the mantle and its mass supply, being:

2πcotα = log

(

1+ sinβ

1− sinβ

)

; γΣ = 2kcotα (41)

The resulting simulated morphology is depicted in Figure 4(c), demonstrating that

the neural system of the gastropod is somehow able to regulate mass production in

function of the coiling angle.

4 Free-boundary morphogenesis for fluid-like living matter

In the previous section, we have introduced a general chemo-mechanical theory

of morphogenesis, which requires the specification of the constitutive equations de-

scribing the biorheological properties of living matter, possibly spanning from vis-

cous fluids to soft solids. Let us first discuss a simple free-boundary morphogenetic

problem for a fluid-like biological system from [18]. In particular, we will consider

the chemotactic expansion of an aggregate of living cells, which will be modelled

as am incompressible newtonian fluid, such that:

σ =−pI+ηd (42)

where p is an hydrostatic pressure and η is the fluid viscosity.

From Eq.(15), the motion is governed by the Navier-Stokes equations:

ρ
dv

dt
= ρbv − grad p+η∇2v (43)

where ∇2 is the spatial laplacian operator, and ρ is the constant spatial density of

the cell, which is almost equal to the one of water.

4.1 Definition of the chemotactic model in a Hele Shaw cell

We consider an aggregate of living cells occupying the domain x ≤ xb, where xb

is the rectilinear border, of an Hele Shaw cell, i.e. confined between two parallel flat

plates separated by an small gap of length ℓ. The cells are bounded by an inviscid

fluid which occupies the domain x > xb, as sketched in Figure 5 (a). Let z = 0 be

the plane in between the plates and ℓ << L, where L is the characteristic macro-

scopic size of the morphogenetic pattern that we aim to observe. Accordingly, the
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component of the velocity in z is much smaller than the two others, which are also

governed by the following scaling [54]:

∂ 2vi

∂x2
<<

∂ 2vi

∂ z2
(44)

where the subscript i = (x,y) indicates the component of the velocity. Since the

typical duplication time of cells is about a day and the fluid is highly viscous, the

corresponding flow occurs at a low Reynolds number, so that the terms η∇2v dom-

inate with respect to convective and gravitational effects, so that Eq. (43) simplifies

in virtue of Eq.(44) as:

grad p = η
∂ 2vi

∂ z2
(45)

Respecting the necessary symmetry and boundary condition at the plates, we can

therefore assume that:

vi(x,y,z;t) = vi(x,y,0;t)

(

1− 4z2

ℓ2

)

i = (x,y) (46)

so that Eq.(45) reduces to a classical Darcy equation for the planar velocity v =
v(x,y,0, ;t), being:

v =
ℓ2

8η
grad p = Kp grad p (47)

where all field and operators are planar. The parameter Kp = ℓ2/(8η) is the equiva-

lent of the porosity coefficient, and represents here the friction forces resulting from

the shallow geometry. It is therefore possible to solve the problem using a fully two-

dimensional model.

We assume that cell proliferation if driven by a morphogenetic signal diffusing in-

side the Hele-Shaw cell, and possessing an infinite reservoir at x → ∞, which is

independent on the local dynamics (Figure 5, b). The cells possess specific surface

receptors which capture the morphogen at a typical uptake rate γc. Accordingly, the

concentration c = c(x,y;t) of the morphogen is governed by the following reaction-

diffusion equations inside the Hele-Shaw cell:

ċ =

{

Dc∇2c− γcc i f x ≤ xb

Dc∇2c i f x > xb
(48)

where Dc is the diffusion coefficient inside the cell.

The living cells respond to a gradient of the morphogen concentration by gener-

ating a mass flux m. In particular, we assume the classical Keller-Siegel constitutive

equation [71], being:

m = Kc gradn (49)

where Kc is a positive definite mobility parameter. Although possibly dependent on c

for representing a degenerate mobility in different classes of biochemical reactions,
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Fig. 5 Schematics of the Hele Shaw cell containing a living material (orange) expanding with a

rectilinear free border at x = xb (a). Distribution of the morphogen concentration n (green line)

inside the cell (b). Perturbation of the rectilinear border with wavenumber k and growth rate λ (c).

for the sake of simplicity we assume Kc to be a constant in the following. From

Eq.(12), the balance of mass within the expanding cellular domain is given by:

dρ

dt
= divm−ρ divv = 0 (50)

which vanishes in virtue of the incompressibility of the living cells. In Eq.(50) we

considered that the morphogenesis only resides on mass diffusion, neglecting the

presence of volumetric sources of mass.

Substituting Eq.(47, refconst-m) in Eq.(50), the equation of motion reads:

Kpρ∇2 p−Kc∇2c = 0 (51)

Thus, the Eqs.(48,51) govern the morphogenesis of the free boundary domain in this

model. The mathematical model is complemented by four boundary conditions at

the free border. First, the Young-Laplace equation imposes the mechanical equilib-

rium at the interface, being:

p = p0 −σC at x = xb (52)

where C is the local curvature (initially equal to zero for a planar front), σ is the

surface tension and p0 is the constant outer pressure of the inviscid fluid. Second, for
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compatibility we must impose the continuity of the normal velocity at the interface:

dxb

dt
·nb = v(xb) ·nb at x = xb (53)

where nb is the outward unit vector at the free surface. Finally, two conditions must

be imposed for c and its normal gradient at the interface:

c(x−b ) = c(x+b ); gradc(x−b ) ·nb = gradc(x+b ) ·nb (54)

stating the continuity of the morphogen concentration and of the chemical flux

across the free boundary, given the absence of any interfacial phenomenon.

4.2 Dimensionless form of the governing equations

The governing equation can be recast in a dimensionless form using the following

values:

tc = γ−1
n ; Lc =

√

Dc
γc

; vc =
√

Dcγc;

pc =
Dc
Kp

; cc = c(x → ∞)
(55)

where tc,Lc,vc, pc,nc are characteristic time, length, velocity, pressure, and chem-

ical concentration, respectively. Defining dimensionless variables with respect to

such characteristic values to obtain, we can rewrite the Eqs.(48,15, 51) in their di-

mensionless form as follows:

˙̄c =

{

∇̄2c̄− c̄ i f x̄ ≤ x̄b

∇̄2c̄ i f x̄ > x̄b
(56)

v̄ =− ¯gradp̄ (57)

∇̄2p̄ =−∇̄2n̄; with G =
Kccc

ρDn
(58)

where the bar indicates dimensionless variables. Interestingly, the only result-

ing dimensionless parameter is G in Eq.(58), which represents a ratio between

morphogen-driven mass production and the mass evacuation rate driven by viscous

effects. Furthermore, the boundary conditions given by Eqs.(52-54) rewrite as:

p̄ = p̄0 − σ̄C̄; with σ̄ =
σKp

Dn

√

γn

Dn
=

σℓ2

8ηvcL2
c

at x̄ = x̄b (59)

dx̄b

dt̄
·nb = v̄(xb) ·nb (60)

c̄(x̄−b ) = c̄(x̄+b ); ∇̄c̄(x̄−b ) · cb = ∇̄c̄(x̄+b ) ·nb (61)
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In accordance with the Buckingham Π theorem [13], the mathematical model given

by Eqs.(56-61) is entirely governed by the dimensionless parameters G and σ̄ de-

fined in Eqs.(58, 59), which will control the evolution of the biological system dur-

ing morphogenesis. In physical terms, σ̄ represents the ratio between the surface

tension and the viscous forces.

For matters of notation compactness, we’ll drop the bars in the following analysis.

4.3 Traveling wave solution

Eqs.(56-61) allow the existence of a traveling wave solution of the problem.

Thus, we hypothesize that the front moves with a constant dimensionless veloc-

ity U going from left to right, i.e. assuming a positive chemotaxis driving towards

the highest concentration of the morphogen. Considering a dimensionless variable

ζ = (x−U t), we can solve the reaction-diffusion dynamics in Eqs.(56,61), deriving

the following morphogen concentration:

c0(ζ ) =

{

c0(0) · e
−U+

√
U2+4

2 ζ i f ζ ≤ 0

1+(c0(0)− 1) · e−Uζ i f ζ > 0
(62)

where c(−∞) = 0, c(∞) = 1 and c0(0) =
2U

U+
√

U2+4
is the morphogen concentra-

tion at the rectilinear front. We remark that c0 must be positive definite, so that the

boundary expands with U > 0. Imposing in Eqs.(58, 59) that p0(0) = p0 and that

p(−∞) must be bounded, the traveling wave for the pressure field reads:

p0(ζ ) =−G(c0(ζ )− c0(0))+ p0 i f ζ ≤ 0 (63)

Finally, the Dirichlet condition at the free boundary in Eq.(60) fixes the velocity of

the traveling wave as:

U =
G− 1√

G
(64)

revealing that a traveling wave solution can appear if and only if G > 1, i.e. if the

chemotactic growth production is faster than diffusion-driven mass evacuation.

4.4 Linear stability analysis

Let us now study the stability of the traveling wave solution given by Eqs.(62,63),

in order to investigate the existence of a morphological transition during the mor-

phogenetic process. For this purpose, we impose a perturbation ζ (0) at the free

boundary, whose dimensionless expression in the moving frame is given by :
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ζ (0) = xb −Ut = ε · eλ tcos(κy) (65)

where κ is the spatial wavenumber and λ is its time growth rate, as depicted in

Figure 5(c).

We write p and c as a series expansion around the traveling wave solution in the

moving frame, as follows:

p(x,y;t) = p0(ζ )+ ε · p1(ζ )e
λ tcos(κy) (66)

c(x,y;t) = c0(ζ )+ ε · c1(ζ )e
λ tcos(κy) (67)

where p0(Z),c0(Z) are the known traveling wave solutions.

The solution for c1(ζ ) can be found from Eq.(56), imposing the continuity of the

chemical concentration and its flux across the boundary:

c1(ζ ) =







c1(0) · e
−U+

√
U2+4(1+λ+κ2)

2 ζ i f ζ ≤ 0

c1(0) · e
−U−

√
U2+4(λ+κ2)

2 ζ i f ζ > 0

(68)

where:

c1(0) =− 4U · (U +
√

U2 + 4)−1

√

U2 + 4(1+λ +κ2)+
√

U2 + 4(λ +κ2)
(69)

Substituting the solution for c1(ζ ) in Eq.(58), we derive the leading order governing

equation for the perturbed pressure field, being:

p1
′′
(ζ )−κ2p1(ζ )+

+Bn1(0) ·
[

(

−U+
√

U2+4(1+λ+κ2)
2

)2

−κ2

]

e
−U+

√
U2+4(1+λ+κ2)

2 ζ = 0
(70)

which is valid for ζ ≤ 0, and the prime denotes derivative on ζ . Eq.(70) has the

following general solution:

p1(ζ ) =−Gc1(0)e
−U+

√
U2+4(1+λ+κ2)

2 ζ +A · eκζ (71)

The constant A in Eq.(71) can be fixed imposing the boundary solution in Eq.(59).

Recalling that the curvature can be written as

C =
∂ 2ζ (0)/∂y2

[

1+(∂ζ (0)/∂y)2
]3/2

, (72)

we find that :

p1(ε ·eλ tcos(κy)) = p0(0)+(p0

′
(0)+ p1(0))ε ·eλ t = po+ σ̄κ2ε ·eλ tcos(κy) (73)
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giving at the leading order:

A = σ̄κ2 +G[c1(0)+ c0
′
(0)] = σ̄κ2 +U +Gn1(0) (74)

Finally, the boundary condition in Eq.(60) allows deriving the dispersion equation

for the perturbed mode. Accordingly, we find that:

−p0

′′
(0)− p1

′
(0) = λ (75)

which can be simplified as:

λ =−σ̄κ3 −κU +G

[

n0

′′
(0)+ c1(0)

(

−κ +
−U +

√

U2 + 4(1+λ +κ2)

2

)]

(76)
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Fig. 6 Dispersion diagrams shown at different values of the dimensionless parameter G = KmKΨ nc

ρDn
.

The curves have been numerically obtained using the Newton algorithm, setting σ=0.5.

Substituting Eqs.(64, 69) in Eq.(76), we can can write an implicit dispersion

equation uniquely as a function of the two dimensionless parameters G, σ̄ of the

problem, reading:

λ =−σ̄κ3 −κ
G− 1√

G
+

G− 1

G
−

(G− 1) ·
(

−2κ − G−1√
G
+

√

(G+1)2

G
+ 4(λ +κ2)

)

√

(G−1)2

G
+ 4(λ +κ2)+

√

(G+1)2

G
+ 4(λ +κ2)

(77)

Since Eq.(77) involves the dimensionless growth mode λ and wavenumber κ in an

implicit way, we solved it numerically. The resulting curves are depicted in Figures

?? and 7 for different values of the dimensionless parameters G and σ̄ . Even if both
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Fig. 7 Dispersion diagrams shown at different values of the dimensionless parameter σ̄ =
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Dn

√

γn

Dn
. The curves have been numerically obtained using the Newton algorithm, setting G=1.5.

the surface tension and the boundary velocity are stabilizing effects at small wave-

lengths, the rectilinear front is always unstable at large wavelengths, having a maxi-

mum value λmax of the time growth rate. Although the a nonlinear stability analysis

would be required for investigating the pattern dynamics, we expect the emergence

of undulated structures with a typical length of about 2π/κ(λmax) ·
√

Dn/γn.

4.5 Pattern formation in the nonlinear regime

The dispersion diagrams resulting from the linear stability analysis highlighted

that the rectilinear border is always unstable at large wavelengths. The dispersion

curves are qualitatively similar to the one encountered in other hydrodynamic prob-

lems, such as the Saffmann-Taylor [101] or the Mullins-Sekerka [89] instabilities.

Similarly, we expect that the moving front will rapidly develop growing undulations,

whose shape will be fixed by fully nonlinear effects. In the following we numeri-

cally investigate the nonlinear pattern formation for the proposed model in order to

describe some experimental results on epithelial cells [94], showing the formation

of fingering instabilities in expanding free rectilinear surfaces of cellular monolay-

ers. In order to provide a computational solution, we implemented the problem into

a finite element code [49]. Eqs.(56, 58) have been solved on a triangular grid, fitting

at every iteration the moving interface. Briefly, given the concentration of nutrients

at time tm, the pressure pm is first computed, through Eq. (58) and then the velocity

field, using the Darcys law. Thus, the boundary can be explicitly moved and Eq. (56)

can be solved for the concentration at time tm+1, using an implicit-Euler scheme. In

order to guarantee the robustness of the semi-implicit algorithm, at every iteration,



Mathematical modeling of morphogenesis in living materials 29

Fig. 8 (a) Wound healing experiment showing the propagation over 24 h of a monolayer of tumour

cells. Adapted from [108]. (b) Fully nonlinear numerical simulation of the proposed free-boundary

morphogenetic model.

the time step ∆ t = (tm+1 − tm) is set equal to the ratio between the minimum mesh

size and the modulus of the maximum boundary velocity at the mth iteration. Finally,

a spatial discretization with finite element is performed using continuous piecewise

quadratic P2 Lagrangian elements. Since the mesh size affects the minimum ob-

servable unstable wavelength, we adaptively refined the mesh in order to control the

number of elements on the colony contour at every time step.

Simulation results are shown in Figure 8 against some pictures of a wound heal-

ing experiment showing the propagation over 24 h of a monolayer of tumour cells.

The qualitative agreement of the emerging morphology highlights the importance

of chemo-mechanical cues on the dynamics of the wound healing processes, whose

effectiveness is known depend on the coupling between the motility and the cell

proliferation rate [82].
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5 Growth, remodelling and morphogenesis for soft elastic matter

The proposed morphogenetic theory should be refined to account for further im-

portant issues arising when dealing with solid living matter. Firstly, biological tis-

sues undergo large deformations. Therefore, the undeformed and deformed config-

urations are not necessarily close, so that the classical infinitesimal elastic theory

cannot be used. Secondly, soft biological matter exhibit residual stresses, i.e. a self-

equilibrated distribution of internal stresses persists in the tissue when all external

loads have been removed. Indeed, as discussed in the previous sections, living ma-

terials have the striking ability to change actively their micro-structure for adjusting

to the surrounding media, developing a state of internal tension aimed at optimiz-

ing their structural behavior. Residual stresses in living materials, closely resem-

bling the ones originated by misfits within inert matter [3], are almost ubiquitous

in Nature). Their magnitude has been measured in several tissues (e.g. arteries [17],

airways [57], hearth [124], gastro-intestinal tissues [53]), using simple cutting ex-

periments. In arteries, for instance, they can be inferred by measuring the opening

angle of an excised tissue ring after a radial cut. Thirdly, residual stress may accu-

mulate in the tissue during a morphogentic process, possibly triggering an elastic

instability beyond a critical value. Accordingly, they can orchestrate a morphologi-

cal transition even in the absence of either external loads or geometrical constraints.

Lastly, soft tissues exhibit a nonlinear elastic behavior which should be taken into

account when making constitutive assumptions.

In the following, we will extend the proposed chemo-mechanical theory of open

systems in view of these key considerations.

5.1 An interpretation of morphogenesis in solids using the theory

of configurational forces

The theory of configurational forces allows to provide a straightforward inter-

pretation of the driving forces acting during the morphogenetic processes in living

matter [85]. For a soft elastic solid, we can postulate the existence of an Helmholtz

free energy Ψ having the following functional form:

Ψ =Ψ(F,ci,Θ ;X, t) (78)

where the explicit dependence on X, t may represent growth and ageing phenomena,

respectively. Applying the chain rule for the differentiation of Ψ in in Eq.(28), we

obtain the following set of constitutive equations [30] :

S = ρ0

∂Ψ

∂F
; Ψi = ρ0

∂Ψ

∂ci
; η =−∂Ψ

∂Θ
(79)

Accordingly, the reduced Clausius-Duhem inequality rewrites:
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Jci · (GradΨi +ηi GradΘ)−ρ0
∂Ψ

∂ t
|expl −

Q

Θ
·GradΘ ≥ 0 (80)

where the explicit derivative over time accounts for possible dissipation during age-

ing phenomena [83].

The theory of configurational forces proves that canonical projection of the bal-

ance of the linear momentum in the material setting allows accounting for the mo-

mentum associated to all the degrees of freedom of the deformation field, while the

balance of p involves only the translational momentum [84]. This is of fundamental

importance for morphogenetic processes, which are characterized by the presence of

inhomogeneities in the material set. Let V = ∂X
∂ t
|x =−F−1v be the inverse motion

velocity, i.e. the material velocity field, we can define a pseudomomentum density

or canonical momentum density as follows:

Pm =
∂K

∂V
= ρ0FT FV =−FT p =−pF (81)

where K = 1/2ρ0v2 is the kinetic energy. Let us now perform a right-multiplication

of Eq.(17) times F, as follows:

d

dt
(ρ0v)F =−dPm

dt
−ρ0vḞ = bvF− Ω

ρ0

Pm +(DivS)F (82)

Using the constitutive assumptions in Eq.(142), let us recall the useful identities:

(Div . S) .F = Div . (SF)− tr(S GradF) (83)

tr(S GradF) = Div . (ρ0ΨI)− ∂ (ρ0Ψ)

∂X
|expl − µi Gradci +η GradΘ (84)

ρ0vḞ = GradK − 1

2
v2(Gradρ0) (85)

Substitute Eqs.(13 83-85) in Eq.(82), and we find the the canonical balance of

pseudomomentum density in the material framework:

dPm

dt
= fext + fg + finh + fc + fΘ +Div b (86)

Eq.(86) states that there are five sources of material inhomogeneities: the convection

of the body forces in fext , the mas growth in fg, the true material inhomogeneities in

finh, the internal variables in fc, and the temperature in fΘ . They are defined as:



























fext =−bvF

fg = ρ̇0

ρ0
Pm

finh = ∂ (K−ρ0Ψ )
∂X

|expl

fc =−µiGradci

fΘ = ρ0ηGradΘ

(87)
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Moreover , we find the stress measure that drives the evolution of material inhomo-

geneities is the Eshelby tensor b, defined as:

b =−[(K −ρ0Ψ)I+SF] (88)

This stress measure is a fundamental importance since it governs the configurational

changes during morphogenesis, as it will be highlighted in the following . Finally,

we recall that the frame indifference of the Helmholtz free energy in Eqs.(79) with

respect of arbitrary rotations of the actual configuration allows deriving the conser-

vation of the angular momentum.

5.2 Mathematical theory of volumetric growth in soft solids

At the beginning of the 1980s, Skalak and coworkers proposed the firs kinematic

descriptions of finite volumetric and surface growth [104, 103] in a continuum me-

chanics framework. They introduced the idea that growth can induce geometric in-

compatibilities in the microstructure, which would provoke the transition from an

unloaded stress-free configuration to a pre-stressed reference configuration . Con-

versely, no internal stresses arise in the tissue if the growth strains are compatible,

i.e. do not induce material distorsions.

The seminal work of Skalak opened the door to a number of experimental stud-

ies which aimed at characterizing the residual stress distribution in biological tis-

sues. From a modeling viewpoint, much work has been done by Anne Hoger and

coworkers [62, 63, 64, 65, 70] to define a hyperelastic constitutive theory of soft

materials with residual stresses. In particular, a multiplicative decomposition has

been proposed for dealing with volumetric growth in living materials [98, 105]. The

mechanical approach based on a multiplicative decomposition was first introduced

in the theory of elasto-plasticity by Kröner [74] and Lee [79] in order to split the

inelastic and the elastic components and it has been widely employed in continuum

mechanics models.

According to this mathematical theory, the mapping χ introduced in Eq.(1) can be

split into two components. The first is associated to the a change of the unstressed

state of the material and it transforms the tissue from its initial stress free configu-

ration B0 into a new stress-free grown (remodeled) state, denoted as Bg in Figure

9. In mathematical terms, the deformation gradient F defined in Eq.(2) can be split

into two components, as follows:

F = FeFg (89)

where Fg represents the volumetric growth (remodeling) tensor and Fe is the elastic

tensor. We remark that the intermediate state is not necessarily a configuration that

could be physically observable for the material. Indeed, this grown or remodeled

state Bg can be seen as the collection of local states obtained at each material point
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Fig. 9 The multiplicative decomposition of the deformation gradient F: the growth (remodeling)

component Fg defines a natural grown or remodeled state Bg, in which geometrical incompatibil-

ities are allowed, and the elastic component Fe, which restores the physical compatibility in the

spatial configuration.

if all the surrounding constraints would be removed. The ensemble of these stress-

free parts defines the natural grown state of the tissue Bg. Since they may not be

geometrically compatible with each other, overlapping and intersections are allowed

in Bg. The elastic component later restores the global compatibility n the spatial

configuration Ba from the intermediate state Bg.

It is worth noting that even if F is the geometrical gradient of a deformation, this

may not be the case for its components Fg and Fe, which are defined as tangent

maps as follows:

Fg : TB0 → TBg Fe : TBg → TBa. (90)

The multiplicative decomposition in Eq.(122) implies that the morphogenetic effects

on the tissue strain can be considered separately from the elastic deformations. This

assumption resides on the physical observation that the typical time-scales involving

elasticity and growth (remodeling) are very different.

Let τg,τv,τl ,τe be the four characteristic times of the growth elastic problem:
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• The characteristic time of growth τg can range from hours to days, e.g. being

characterized by the typical doubling time of living cells.

• The viscoelastic characteristic time τv is of the order of hundreds of seconds and

is considered as the relaxation time of the tissue [46].

• The elastic time τe is associated to the characteristic propagation time of elastic

waves, in the order of seconds.

• The loading time τl of the external loading

It is therefore apparent that the growth time scale is much bigger than the others, so

that the growth strains can be separated from the elastic deformations. Furthermore,

since the elastic response is much faster than the growth processes, the soft matter

is always in a state of elastic equilibrium at times comparable to τg [50].

Under these assumptions, it is possible to introduce a material isomorphism for

the Helmholtz free energy [40], so that:

ρ0Ψ (F,ci,Θ ;X, t) = ρ0Ψ(F,Fg(X; t),cβ ,Θ , t) = ρg(detFg)Ψ0(Fe,cβ ,Θ , t) (91)

where ρg = (ρ0/detFg) represents the mass density with respect the intermediate

state. In practice, the mechanical behavior of the materials uniquely depends on the

elastic part oh the deformation gradient, whilst the growth tensor may introduce

volume changes and geometrical distortions.

Before considering the constitutive equation and the evolution laws for the growth

tensor in the next paragraph, let us finally clarify the morphogenetic information

carried within Fg. Since most living materials are mainly composed by water, the

incompressibility constraint reads:

detFe − 1 = 0 (92)

so that in general ρ = ρg. Accordingly (detFg) represent the volume ratio between

the grown and the ungrown matter. If we assume that the material is produced at a

constant density ρ , the mass balance Eq.(13) rewrites:

ρ̇0

ρ0

=
Ω

ρ0

=
˙(detFg)

detFg
= tr(ḞgF−1

g ) (93)

Eq.(93) highlights a fundamental issue: for an incompressible material, the specifi-

cation of the functional dependence of Fg over time is equivalent to a constitutive

assumption on Ω . Therefore, only one of the two can be constitutively imposed.

Whilst modeling fluid-like materials it was mandatory to define Ω , in solid materi-

als this could be equivalently done by imposing an evolution law for Fg.
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5.3 Constitutive assumptions and evolution laws for growth and

remodelling

Let us now discuss the thermodynamic restrictions arising from the application

of the multiplicative decomposition in Eq.(122) with the material isomorphism in

Eq.(91). Substituting Eq.(91) in the reduced dissipation inequality in Eq.(28), de-

veloping the differentions using the chain rule one obtains after straightforward cal-

culation the following constitutive laws:

σ = ρFe.
∂Ψ0

∂Fe
(94)

S = ρ0F−1
g .

∂Ψ0

∂Fe
(95)

Using Eqs.(95,93), the residual dissipation inequality inside the control volume

reads:

− tr[b(F−1
g .Ḟg)]+ ρ̇0Ψ0 −ρ0

∂Ψ0

∂ t
≥ 0 (96)

Eq.(96) highlights that the static material Eshelby stress tensor b = ρ0Ψ0I−SF is

the driving stress measure directing the evolution dynamics of the morphogenetic

processes. The frame indifference for the material isomorphism in Eq.(91) imposes

that b is a symmetric tensor. Accordingly, thermodynamically consistent evolution

laws for growth and remodelling read:

Ḟg =− f+(ci,Θ)ρ0Fgb (97)

where f+(ci,Θ) is a positive definite scalar function, whose expression may repre-

sents a specific temperature-dependent (e.g. Arrhenius-based relations) chemical ki-

netics in the reactions occurring during the morphogenetic processes [22]. The evo-

lution law in Eq.(97) is a generalization of the classical results obtained for inelastic

continua, since the Eshelby tensor is the symmetric stress conjugate of the growth

velocity gradient [86]. Moreover, the symmetry of the driving force expressed by b

is a necessary requirement, as pointed out by [103]: indeed, the symmetric part of

Fg is the only shape-changing deformation of the growth tensor.

Let us now provide a geometrical interpretation of the coupling between stress and

growth in the proposed mathematical model. For this purpose, we perform the ex-

plicit gradient of the free energy expressed by Eq.(91), and we derive the quasi-static

driving force finh of true material inhomogeneities in Eq.(87):

finh =−ρ0
∂Ψ0

∂X
|expl =−ρ0

(

∂Ψ

∂Fg
: GradFg

)

=−ρ0b : T (98)

where we used the two dots to indicate double contraction, i.e. (b : T )k = b ji(T )i jk.

In Eq.(98), the third-order tensor T = F−1
g GradFg is the generally not-symmetric

torsional material connection associated with Fg. Accordingly, the expression of the
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driving force in Eq.(98) reflects the geometrical interpretation that the Eshelby force

is the stress measure driving the torsion of the material connection during morpho-

genesis. Evolution laws coupling stress, growth and mass transport, extended to the

second gradient of the deformation have been discussed in further details in [22],

showing that the strain gradient Eshelby stress is associated to the curvature of the

material connection.

5.4 Morpho-elasticity of growing living matter

Morpho-elasticity is the recently developed branch of continuum mechanics in-

vestigating the emergence of complex patterns in living matter after the occurrence

of an elastic instability. Indeed, the accumulation of residual stresses during mor-

phogenetic processes can trigger a morphological transition within the biological

material as a result of an elastic bifurcation. In the following, we will present the

basic theoretical tools in the fields.

5.4.1 Basic solution of the quasi-static elastic problem

In preceding parts of this section, we have shown that the thermo-mechanics

of open systems and the theory of configurational forces are useful frameworks to

model the chemo-mechanical cues of morphogenesis in soft elastic tissues.

Summarizing, the resulting boundary value problem in nonlinear elasticity is given

by the following set of equations in the current configuration Ba:































ρ v̇− divσ −bv = 0

ω = ρ tr(ḞgF−1
g )

detFe = 1

σ = ρFe
∂ψ0

∂Fe
− pI

Ḟg =− f+(ci,Θ)ρ0Fgb

(99)

which contains the balances of linear momentum and mass, the incompressibility

constraint, the constitutive equation for the Cauchy stress tensor and the evolution

law for the growth tensor, respectively. Such governing equations are typically com-

plemented by three possible sets of boundary conditions, which will be briefly dis-

cussed.

Let ∂B0,∂Bx
0 ,∂Bσ

0 be the boundary in the reference configuration and two por-

tions of the boundary, respectively, such that ∂B0 = ∂Bx
0 ∪Bσ

0 . Let ∂Ba,∂Bx
a ,∂Bσ

a

the associated quantities in the actual configuration, where ∂Ba = ∂Bx
a ∪Bσ

a . Let

us consider a quasi-static growth process, so that we are not interested in deter-

mining the evolution of the growth tensor Fg over time, but we aim at deriving the
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elastic solution at a fixed value of Fg. Under this assumption, the three possible sets

of boundary conditions read:

• Dirichlet boundary conditions: the displacements for all points belonging to

∂B0 and ∂Ba are specified in the following forms, respectively:

{

u0(X) = x(X)−X = u∗
0 on ∂B0

ua(x) = x−X(x) = u∗
0 on ∂Ba

(100)

where u0,ua are the displacements in material and spacial form, respectively and

u∗
0 is the displacement vector to be assigned at the boundaries.

• Neumann boundary conditions: the traction loads at all points belonging to

∂B0 and ∂Ba are given in the following forms, respectively:

{

ST N = t∗0 on ∂B0

σn = t∗ on ∂Ba,
(101)

where S,σ are the Nominal and Cauchy stress respectively and t∗0, t
∗ are traction

vectors to be assigned.

• Mixed boundary conditions: the displacements are specified on a portion of

the boundary ∂Bx
0 , ∂Bx

a and traction loads are given on the remaining subset

∂Bσ
0 ,∂Bσ

a , in the following forms:

{

u0(X) = u∗
0 on ∂Bx

0

ST N = t∗0 on ∂Bσ
0 ,

(102)

in the reference configuration or:

{

ua(x) = u∗
0 on ∂Bx

a

σn = t∗ on ∂Bσ
a ,

(103)

in the actual configuration.

In quasi-static conditions, let x(0) = χ(0)(X) be the basic solution of the gov-

erning equation in Eq.(99) wit one of the possible sets of boundary conditions in

Eqs.(100-103) The solution x(0) depends on a control parameter which is related to

the given expression of Fg. In the following, we will introduce the theory of incre-

mental deformations superposed on finite strains to investigate the linear stability

analysis of this basic solution.

5.4.2 Method of incremental deformations superposed on finite deformations

Following Ogden [91], the fundamental idea of the method of incremental defor-

mations superposed on finite deformations is to perturb the basic solution x(0) to the

elastic problem, with a small incremental deformation. Performing a series expan-

sion, the zeroth order term is a finite deformation, representing the basic solution

with the initial shape of the material, whilst the first order term is an incremental
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deformation, defining the possible morphology after an elastic bifurcation.

Kinematics of the incremental deformation Let x(0) be the basic position vector

in Ba identified by the basic finite deformation χ(0) and let ε x̂ be a small displace-

ment from x(0). Accordingly, the perturbed position x̄ can be written as:

x̄ = x(0)+ ε x̂ = χ (0)(X)+ εχ(1)(x(0)) (104)

where |ε| ≪ 1 and εχ (1)(x(0)) is a small deformation which in the following will be

referred to as the incremental deformation. Note that χ (1) maps the basic position

vector x(0) into its incremental displacement x̂ in the perturbed actual configuration

B̂a. Adopting the convention of summation on repeated indexes, the incremental

deformation can be written:

χ(1)(x) = u j(x)e j (105)

where the components u j ( j = 1,2,3) are the displacements along the principal di-

rections e j ( j = 1,2,3), respectively. Figure 10 gives a graphical representation of

the basic and perturbed fields. In the following, the variables after perturbation will

be indicated with the symbol ¯(•), and the incremental variables with the symbol ˆ(•).
Using the definition of deformation gradient in Eq.(2), the perturbed deformation

gradient F̄ rewrites:

F̄ = F(0)+ εF̂ =
∂ χ (0)(X)

∂X
+ ε

∂ χ (1)(x(0))

∂X
=

=
∂ χ (0)(x(0))

∂X
+ ε

∂ χ (1)(x(0))

∂x(0)
∂x(0)

∂X
= F(0)+ εΓ F(0)

(106)

where the material and the spatial displacement gradient F̂ = Grad(χ (1)(x(0))) and

Γ = grad(χ (1)(x(0))) respectively, have been introduced and are related through the

following relation:

F̂ = Γ F(0). (107)

Accordingly, the incremental incompressibility condition in Eq.(92) reads:

trΓ = 0. (108)

Incremental equilibrium equations Let us now consider the incremental consti-

tutive equation for the stress tensor fields. The perturbed Nominal stress S̄ is given

by:

S̄ = S(0)+ εŜ, (109)

where the S(0) is the zeroth order term of the series expansion of the Nominal stress

in Eq.(99). The leading order increment Ŝ can be derived by differentiating the con-

stitutive equation in Eq. (95) and it reads:
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Ŝ = A
1F̂+ p(F(0))−1F̂(F(0))−1 − q(F(0))−1. (110)

In Eq. (110), the term q = p̂ is the increment in p and A
1 is the fourth-order tensor

of the elastic moduli, defined as:

A
1 =

∂ψ0

∂F∂F
, with A

1
γkβ j =

∂ 2ψ0

∂Fkγ ∂Fjβ
. (111)

The perturbed Cauchy stress tensor in the perturbed configuration B̂a, is given by

σ̄ = F̄S̄, but since B̂a is unknown,it is more practical to use the push-forward of the

perturbed Nominal stress, defined as:

S̄0 = F(0)S̄ = S
(0)
0 + εŜ0 (112)

where, S
(0)
0 = F(0)S(0) is the push forward of the zeroth-order term S(0). Using

Eq.(107) the push-forward Ŝ0 of the first order term Ŝ is given by:

Ŝ0 = F(0)Ŝ = A
1
0Γ + pΓ − qI (113)

F

F
g

F
e

B
0

B
a

B
g

B
aX

x

x=x  + εx

F=F  +εF

F
e
=F

e 
+εF

e

 S
0
=S

0 
+εS

0

I + εΓ

Reference 

configuration

Natural state

Actual 

configuration

Perturbed

configuration

χ(0)

χ(0)+εχ(1)

1
χ
+εχ(1)

(0)

(0)

(0)

(0)

(0)

(0)

(0)

 S
0

(0)

 S
(0)

ˆ

ˆ

ˆ

ˆ

ˆ

Fig. 10 Schematic diagram of the incremental deformation superposed on a finite strain. The ze-

roth order fields are the finite deformation χ (0), the basic position vector x(0), the basic deformation

gradient F(0) and its elastic component F
(0)
e , the basic Nominal stress S(0) and its push-forward S

(0)
0 .

The perturbed fields after the introduction of the incremental deformation χ(1) are the perturbed

position vector x̄, the perturbed deformation gradient F̄ and its elastic component F̄e, the push

forward of the perturbed Nominal stress S̄
(0)

.
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with:

A
1

0hkl j = F
(0)
hγ F

(0)
lβ A

1
γkβ j. (114)

being the component of the fourth-order tensor A 1
0 , also known as the fourth-order

tensor of instantaneous elastic moduli.

Using the properties of the Piola transformation, the incremental equilibrium equa-

tions in Ba simplify as:

div Ŝ0 = 0, (115)

where Ŝ0 is given by Eq.(113).

Let û∗
0 and t̂

∗
0 be the increments of the assigned displacement and traction vectors

u∗
0 and t∗0 respectively and t̂

∗
the increment of the assigned traction vector t∗. The

Dirichlet boundary conditions in the incremental form rewrite:

x̂(X) = û∗
0 on ∂B

x
0 (116)

x̂(x) = χ (1)(x) = û∗
0 on ∂B

x
a (117)

and the corresponding incremental boundary conditions for traction loads read:

Ŝ
T

N = t̂
∗
0 on ∂B

σ
0 (118)

Ŝ
T

0 n = t̂
∗

on ∂B
σ
a . (119)

We remark that the increment t̂
∗

in the nominal traction depends in general on the

incremental deformation other than on any loading parameter.

5.4.3 Summary of the incremental boundary value problem

In summary, the emergence of a morphological transition in living materials pro-

voked by an elastic instability can be studied by solving the following boundary vale

problem in nonlinear elasticity:

{

div Ŝ0 = 0

trΓ = 0
(120)

with boundary conditions in the general mixed form:

x̂(x) = χ (1)(x) = û∗
0 on ∂B

x
a , Ŝ

T

0 n = t̂
∗

on ∂B
σ
a . (121)

Eqs.(120,121) represent a system of four partial differential equations, where the

four unknowns are the three incremental displacements u1(x),u2(x),u3(x) in Eq.(105)

and the increment q of the Lagrange multiplier.
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6 Pattern formation in a growing bilayer under lateral constraint

During embryogenesis, a differential growth between the layers constituting a

soft tissue has been found to control the emergence of a pre-patterning, which may

drive the later tissue differentiation. For example, it has been shown that both elastic

properties and the geometry of the growing layers are key factors determining the

pattern selection and the emergence of several functional structures on the epithe-

lium of gastro-intestinal tissues [102, 23].

In the following, we define a morpho-elastic model of a hyperelastic soft tissue

made of two flat layers growing under a spatial constraint. Such a bilayered geom-

etry is widely encountered in epithelial tissues, e.g. the dermis and the epidermis

for the skin [75, 20]. Our aim is to investigate the pattern formation in this system

model in the absence of differential growth process, simply considering a uniform,

homogeneous swelling constrained by the presence of lateral rigid walls.

6.1 Definition of the model and basic morpho-elastic solution

In a Cartesian coordinate system with unit base vectors ei, with i = (x,y,z), let

us consider a soft elastic tissue attached at the surface Z = 0, and having a vertical

thickness H much smaller than the horizontal lengths Lx,Ly. Moreover, we assume

Ly >> Lx so that we a plain strain condition applies in fulfillment of symmetry

requirements. Accordingly, we will consider the equivalent 2D problem in (x,z) in

the following, unless explicitly stated, as depicted in Figure 11.

Z

X x

t

t=g2Ht

hb=g2Hb

ez =0

u=0

Lx

Hb

F= Grad x

Fig. 11 Schematic diagram of the reference (left) and the basic spatial (right) configurations of a

soft bi-layered materials with lateral constraint along the x-axis. Both the layers are subjected to a

isotropic volumetric growth with Fg = gI, where the scalar g indicates the growth rate.

The tissue is composed by two layers, with thicknesses Hb and Ht , so that

(Hb +Ht) = H. In the following, we will denote with subscripts b and t the fields

related to the bottom and top layer, respectively. Indicating with X = X(X ,Z) and
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x = x(x,z) its material and spatial position vectors, respectively, the kinematics is

described by the geometrical deformation tensor F = ∂x/∂X. The elastic layers can

undergo a isotropic volume variation (e.g. swelling for a polymeric gel, or growth

for a living material). Assuming the multiplicative decomposition in Eq.(122), their

grown natural states are defined by the growth tensor:

Fg = gI, with g > 1 (122)

where g is the isotropic growth rate and I is the unit tensor. Considering the pres-

ence on rigid walls at X = −Lx/2,Lx/2, Fg is not compatible with such spatial

constraints, therefore an elastic deformation must restores the overall compatibility

of the tissue deformation, whilst residual stresses arise.

From a constitutive viewpoint, each layer is modeled as an isotropic neo-Hookean

incompressible material, so that strain energy Ψ0 per unit mass reads

Ψ0 =
µ

2

∫∫

(

tr FeFT
e − 3

)

dX dZ, (123)

where µ is the shear modulus.

The base solution for a growing layer, whose fields are indicated with superscript

(0) in the following, corresponds to a homogeneous elastic deformation:

F
(0)
e = F(0)Fg−1 = diag(λx,λz) = diag(1/g,g) (124)

whose principal stretches λx = 1/g and λz = g enforce the incompressibility con-

straint , i.e. detF
(0)
e = 1. Using the constitutive assumptions in Eq.(94, 95), the resid-

ual Cauchy stress σ (0) and first Piola-Kirchoff stress tensor P(0) for each layer read:

σ (0) = µF
(0)
e F

(0)T
e − p0I, S(0) = µF

(0)
e

T
− p0F

(0)
e

−1
(125)

where p0 is the basic Lagrange multiplier, which can be fixed through the boundary

conditions. In particular, considering a stress-free surface at Z = H, we have p0t =
µtλ

2
z = µtg

2. Moreover, the continuity of the normal stress and displacements at the

layers’ interface read:

σ
(0)
t ez = σ

(0)
b ez; xt(x,Hb) = xb(x,Hb) (126)

so that p0b = µbλ 2
z = µbg2. Therefore each layer is subjected to a uniaxial stress

with:

S
(0)
xx = µ(g−1 − g3); σ

(0)
xx = µ(g−2 − g2) (127)

which is compressive if g > 1, i.e. if the tissue is increasing its volume. Therefore,

such a uniaxial compressive stress is discountinous within the tissue if the layers

have different shear moduli. The goal of the next sextion is to perform a linear sta-

bility analysis of this basic solution, with the aim to investigate the condition driving

the onset of morphological transition.
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6.2 Linear stability analysis

Let us now apply the theory of incremental deformations superposed on the finite

homogeneous solution given by Eq.(124). Hence, let u(1)(x,z, t) be the infinitesi-

mal incremental displacement field. In the case of a neo-Hookean material as in

Eq.(123), it is easy to check that the components of the elastic tensor of instanta-

neous moduli in Eq.(114) read:

A
1

0 jikl = µλ 2
j δ jkδil (128)

where the subscripts run over (x,z) amd δ is the Kronecker delta. Eq.(128) applies

in a coordinate system aligned with the directions of the principal stretches, whilst

higher order instantaneous moduli vanish. Accordingly, the neo-hookean constitu-

tive equation allows to take into account only for geometrical non-linearities. From

Eq.(113), the constitutive equation for the incremental stress reads:

Ŝ0 = µ( ˜gradu(1))T + p0 gradu(1)− qI (129)

where q is the linear increment in the Lagrange multiplier and we defined the oper-

ator ˜grad = [λ 2
x ∂x,λ

2
z ∂z]

T . In the absence of body forces, the equations of motion

in Eq.(115) rewrite:

div ·Ŝ0 = 0. (130)

Using Eq.(129), the incremental equations of motion in Eq.(130) take the following

simplified expressions

−q,x + µλ 2
i u

(1)
x,ii = 0, −q,z + µλ 2

i u
(1)
z,ii = 0, (131)

where the comma denote partial differentiation and Einstein’s summation rule on

repeated indices is assumed. Differentiating these incremental equations of motion

with respect to x, and z, respectively, and using the incremental incompressibility

condition in Eq.(134), I find that

∇2q = 0, (132)

implying that the incremental Lagrange multiplier is a Laplacian field [41].

Conversely, by differentiating the first and second of Eq.(131) by z and x, respec-

tively, and subtracting the resulting equations, we find that:

λ 2
x u

(1)
x,zxx +λ 2

z u
(1)
x,zzz −λ 2

z u
(1)
z,xzz −λ 2

x u
(1)
z,xxx = 0, (133)

At the leading order, the linear incremental incompressibility condition rewrites:

div ·u(1) = u
(1)
x,x + u

(1)
z,z = 0. (134)

The bulk equations (133,134) will be solved in the following using two different

methods: the stream function approach and the Stroh formalism.
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6.2.1 Solution using an elastic stream functions

First, let us define an elastic stream function φ = φ(x,z), so that [91]:

u
(1)
x =−φ,z, u

(1)
z = φ,x, (135)

and Eq.(134) is automatically satisfied. Thus, substituting Eq.(135) in Eq. (133), the

incremental equilibrium is governed by the following bulk equation:

λ 2
z φ,zzzz +(λ 2

x +λ 2
z )φ,zzxx +λ 2

x φ,xxxx = 0, (136)

In particular, it is useful to recast the previous equation in the following form [9]:

∇2∇̃2φ = 0, (137)

where ∇̃2(.) = λ 2
x (.),xx +λ 2

z (.),zz = (.),XX +(.),ZZ . Accordingly, Eq.(137) states that

the equilibrium is governed by a forth order partial differential equation obtained by

combination of the material and spatial Laplacian operators. Thus, the growth tensor

act as a distortion of the original metrics which changes the differential incremental

problem. In the absence of growth, indeed, Eq.(137) would represent the classical

bilaplacian problem found for plane strain problems in linear elasticity.

Let us now imposed the required set of boundary conditions. First, since the

bottom z = 0 of the bilayer is attached, the two corresponding incremental boundary

conditions read:

u
(1)
b (x,0) = 0. (138)

The top surface z = (λz/λx)H = g2H = h is free of incremental tractions, thus:

(u
(1)
t )x,z +(u

(1)
t )z,x = 0,

−λ 2
z q

(1)
t + 2µtλ

2
z (u

(1)
t )z,z = 0. (139)

Moreover, the four remaining equations will be given by the continuity of the in-

cremental displacements and the normal stresses across the interface at z = g2Hb,

being:

u
(1)
b = u

(1)
t ,

µt((u
(1)
t )x,z +(u

(1)
t )z,x) = µb((u

(1)
b )x,z +(u

(1)
b )z,x),

−λ 2
z q

(1)
t + 2µtλ

2
z (u

(1)
t )z,z =−λ 2

z q
(1)
b + 2µbλ 2

z (u
(1)
b )z,z. (140)

Let us search for a solution to Eqs.(137) using the variable separation, thus we

set:

φ(x,z) = Φ(z)eıkx + c.c., (141)

corresponding to the occurrence of a surface undulation with wavenumber k along

the x-axis, where ı is the imaginary unit and c.c. indicates the complex conjugate.
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the corresponding solution is given by:

Φi(z) = a1ie
−kz + a2ie

kz + a3ie
− λx

λz
kz
+ a4ie

λx
λz

kz
; with i = (t,b) (142)

where a1i,a2i,a3i,a4i are coefficient to be determined by boundary conditions, and

we remind that λx/λz = 1/g2. Substituting Eq.(135,142) in Eqs.(138,140), the

boundary conditions can be transformed in the following way:

Ma = 0 (143)

where a = [a1t ,a2t ,a3t ,a4t ,a1b,a2b,a3b,a4b]
T and M is a 8x8 square matrix, whose

detailed expression is given by:

M =

[

M1,M2

M3,M4

]

(144)

with sub-blocks given by:

M1 =

















0 0 0 0

0 0 0 0

− e
− ikhbλx

λz

2kλ 2
z µt

− e

ikhbλx
λz

2kλ 2
z µt

− e−ikhb

kµt λ 2
x +kλ 2

z µt
− eikhb

kµt λ 2
x +kλ 2

z µt

e
− ikhbλx

λz

2kλxλzµt
− e

ikhbλx
λz

2kλxλzµt

e−ikhb

kµt λ 2
x +kλ 2

z µt
− eikhb

kµt λ 2
x +kλ 2

z µt

















, (145)

M2 =



















1
2kλ 2

z µb

1
2kλ 2

z µb

1
kµbλ 2

x +kλ 2
z µb

1
kµbλ 2

x +kλ 2
z µb

− 1
2kλxλzµb

1
2kλxλzµb

− 1
kµbλ 2

x +kλ 2
z µb

1
kµbλ 2

x +kλ 2
z µb

e
− ikhbλx

λz

2kλ 2
z µb

e

ikhbλx
λz

2kλ 2
z µb

e−ikhb

kµbλ 2
x +kλ 2

z µb

eikhb

kµbλ 2
x +kλ 2

z µb

− e
− ikhbλx

λz

2kλxλzµb

e

ikhbλx
λz

2kλxλzµb
− e−ikhb

kµbλ 2
x +kλ 2

z µb

eikhb

kµbλ 2
x +kλ 2

z µb



















, (146)

M3 =





















− e
− ikhbλx

λz (λ 2
x +λ 2

z )
2λxλz

e

ikhbλx
λz (λ 2

x +λ 2
z )

2λxλz
− 2e−ikhb λ 2

z

λ 2
x +λ 2

z

2eikhb λ 2
z

λ 2
x +λ 2

z

−e
− ikhbλx

λz −e
ikhbλx

λz −e−ikhb −eikhb

ie
− ihkλx

λz (λ 2
x +λ 2

z )
2λxλz

− ie
ihkλx

λz (λ 2
x +λ 2

z )
2λxλz

2ie−ihkλ 2
z

λ 2
x +λ 2

z
− 2ieihkλ 2

z

λ 2
x +λ 2

z

e
− ihkλx

λz e
ihkλx

λz e−ihk eihk





















, (147)

M4 =















e
− ikhbλx

λz (λ 2
x +λ 2

z )
2λxλz

− e

ikhbλx
λz (λ 2

x +λ 2
z )

2λxλz

2e−ikhb λ 2
z

λ 2
x +λ 2

z
− 2eikhb λ 2

z

λ 2
x +λ 2

z

e
− ikhbλx

λz e
ikhbλx

λz e−ikhb eikhb

0 0 0 0

0 0 0 0















. (148)
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Accordingly, the onset of a marginal stability is given by the following condition:

detM = 0 (149)

which gives an implicit relation between the marginally stable growth rate g for each

wavenumber k as a function of two dimensionless parameters governing the elastic

problem, namely the shear ratio µt/µb and the aspect ratio Ht/Hb.

6.2.2 Solution using the Stroh formalism

Let us now solve the incremental boundary value problem recasting the govern-

ing equations using the so-called Stroh formalism, originally developed by Stroh

[110] for steady state elastic problems. Let the traction vector in the direction ez be:

t = Ŝ
T

0 ez = [Ŝ0zx, Ŝ0zz]
T . (150)

In a Cartesian reference system, we can write:

t = Ãzzu,z + Ã
T
zxu,x − q ez (151)

t2 = Ŝ
T

0 ex = Ãzxu,z + Ãxxu,x − q ex, (152)

where the following matrices have been introduced:

Ãxx = A 1
0z jzl + p ez ⊗ ez, Ãzz = A 1

0x jxl + p ex ⊗ ex,

Ãzx = A 1
0z j1l + p ez ⊗ ex.

(153)

The incompressibility condition in Eq.(134) rewrites:

ez ·u,z + ex ·u,x = 0. (154)

Substituting Eq.(151) and (152) into Eq.(130), the equilibrium equations rewrite:

t,z + Ãzxu,zx + Ãxxu,xx − q,2 ex = 0. (155)

Now, u,1 can be calculated from Eq.(151) as:

u,1 = Ã
−1
zz (t− Ã

T
zxu,x + q ez) (156)

Deriving Eq.(156), it follows:

u,zx = Ã
−1
zz (t,x − Ã

T
zxu,xx + q,z ez) (157)

u,13 = Ã
−1
zz (t,3 − Ã

T
zxu,23 − Ã

T
31u,33 + q,3 e1) (158)

Substituting Eqs.(157) and (158) into Eq.(155), the equilibrium equations in Eq.(155)

rewrite:
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t,1 +ÃzxÃ
−1
zz (t,x − Ã

T
zxu,xx + q,x ez)+

+Ãxxu,xx − q,x ex = 0.
(159)

Now, the aim is to eliminate the unknown q from Eq.(159).

Therefore, the scalar product e1· is applied to Eq.(156). Then, using the incom-

pressibility condition in Eq.(154) the term e1 ·u,1 can be eliminated and after some

rearrangements the expression for q can be derived as follows:

q = ξ
(

e1 · Ã−1
zz Ã

T
zxu,x − ex ·u,x − ez · Ã−1

zz t
)

, (160)

where ξ = 1/(ez · Ã−1
zz ez).

Assuming that separation of variables holds, wee search for solutions a in the

form:
u = U(z) eikx

t = S(z) eikx,
(161)

where k is the wavenumber in the x direction, i is the imaginary unit and U(z),S(z)
are the amplitude of the incremental displacement and traction vectors, respectively.

Using Eqs.(160-161), Eq.(156) and Eq.(159) rewrite:

d

dz
U(z) = −i

{

Ã
−1
zz

[

Ã
T
zx(k)+ ξ ez ⊗ (kα)

]

}

U(z)+

−i
{

Ã
−1
zz − ξ ez ⊗ ezÃ

−1
zz

}

(iS(z))
(162)

d

dz
(iS(z)) = i

{

− k2
[

ÃzxÃ
−1
zz Ã

T
zx − Ãxx − ξ α ⊗α

]

}

U(z)+

−i
{

[

Ãzx(k)+ ξ kα ⊗ ez

]

Ã
−1
zz

}

(iS(z))
(163)

respectively, where α = (ex − ÃzxÃ
−1
zz ez). Equivalently, we can use the compact

form:
d

dz
η(z) = iGη(z) with η(z) =

[

U(z)
iS(z)

]

(164)

where the vector η(z) is the six-component displacement-traction vector and G is

the so-called Stroh matrix, having the following block-type structure:

G =

[

G1 G2

G3 G4

]

(165)

Therefore, the blocks which constitute the Stroh matrix in the case of incom-

pressible materials take the form:

G1 =− Ã
−1
zz

[

Ã
T
zx(k)+ ξ ez ⊗ (kα)

]

G2 =− Ã
−1
zz + ξ ez ⊗ ezÃ

−1
zz

G3 = −k2
[

ÃzxÃ
−1
zz Ã

T
zx − Ãxx − ξ α ⊗α

]

G4 = G+
1 ,

(166)
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In particular, the hermitian property G4 = G+
1 is crucial for the Stroh formalism

to provide an optimal form in a great variety of elasticity problems. Optimal here

is used in the sense that an efficient numerical procedure can be implemented in

order to solve the incremental problem [32, 34, 24]. The hermitian property, also

implies that the matrix iÎG is symmetric, where Î is defined as the block matrix with

0-blocks on the diagonal and identity blocks elsewhere. This property can be used

to derive the orthogonality and closure relations which provide useful information

on the nature of the blocks of the Stroh matrix [113]. Furthermore, the hermitian

property is a direct consequence of the Hamiltonian nature of the Stroh formalism.

Indeed, every Hamiltonian system in which the variables u and t are work conju-

gates owns this fundamental property [42, 43].

In the case of the incremental problem for the growing bilayer, the blocks of the

Stroh matrix simplify as follows:

G1 =

[

0 −m

−m 0

]

; G2 =

[

−1/(µλ 2
z ) 0

0 0

]

;

G3 =

[

k2µ(λ 2
x + 3λ 2

z ) 0

0 k2µ(λ 2
x −λ 2

z )

]

.

(167)

The Stroh formalism allows to transform the boundary value problem into a first-

order system of ordinary differential equation. In particular, its solution is given in

terms of displacements as [33]:

η i(z) =
4

∑
j=1

a jtξ je
β jz; with i = (t,b) (168)

where β = {−k,k,−kλx/λz,kλx/λz} and ξ j are the eigenvalues and the j−th eigen-

vector ( j = 1,2,3,4) of G, respectively. Thus, Eq.(168) corresponds to the previous

result in Eq.(142) found for with the stream function approach. Similarly, it is pos-

sible to recast the eight boundary condition in the form of Eq.(143), thus obtaining

the dispersion relation expressed in Eq.(149).

6.2.3 Theoretical results: critical growth threshold and pattern selection

We implemented an iterative numerical scheme to solve the dispersion relation

in Eq.(149) as a function of the marginal value ε = (1−λx) = (g− 1)/g for each

wavenumber k = 2πnx/L, with nx integer, at given values of the elastic ratio µt/µb

and aspect ratio Ht/Hb. We therefore identify the critical strain εcr as the highest

marginally stable value associated to the critical wavelength kcr, which will be con-

sidered in the following as a continuous function for the sake of graphical clarity.

In Figure 12, we depict the corresponding critical threshold for the onset of a mor-

phological transition for a growing bi-layered material with Hb = 10Ht (blue curves)

and Hb = 20Ht (green curves) as a function of the elastic ratio µt/µb. In particular,

we observe that if the top layer is stiffer, the critical strain and the corresponding
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Fig. 12 Curves of the critical dimensionless wavenumber kcrHt (left) and compressive strain εcr =
(1−λx) = (g− 1)/g (right) for a growing bi-layered material with Hb = 10Ht (blue curves) and

Hb = 20Ht (green curves) as a function of the elastic ratio µt/µb.

wavenumber decrease for increasing µt/µb. Moreover, we find that the emerging

pattern wavelength is of the order of the thickness of the top layer, whilst the results

do not depend much on the aspect ration if Ht << Hb.

We also notice that the marginally stable curve for kcrHt has a singular behaviour

for µt/µb → 1 and µt/µb → 0. Both cases represent the confined compression of

a homogeneous slab, which is know to experience a surface instability at kcr → ∞,

as first predicted for an elastic half-space by Biot [11]. In this case, the dispersion

relation in Eq.(149) can be greatly simplified, and its marginally stable solution

occurs at kcr → ∞ for the real root of (λ 6
x +λ 4

x + 3λ 2
x − 1) = 0, being:

(λx)cr =
1

3

(

3

√

17+ 3
√

33− 2
3
√

17+ 3
√

33
− 1

)

∼= 0.5436 (169)

implying a critical growth ratio of gcr
∼= 1.8393 or a critical strain of εcr

∼= 0.4563,

as depicted in greated detail in Figure 13.

Fig. 13 Zoom of the marginally stable curves for the critical dimensionless wavenumber kcrHt

(left) and compressive strain εcr = (1−λx) = (g− 1)/g (right) for a growing bi-layered material

with Hb = 10Ht (blue curves) and Hb = 20Ht (green curves) as a function of the elastic ratio µt/µb.
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It is also possible to show that the critical wavenumbers in such singular branches

have a logarithmic dependence on the surface stiffening effect given by the top layer

[9, 20].

From an energetic viewpoint, the onset of a morphological transition is driven by

a competition between the two bulk elastic energies, through a complex interplay

between geometric and elastic parameters. The linear stability analysis allows to

identify the critical threshold of such a bifurcation, but it cannot describe its evolu-

tion beyond this threshold value. For this purpose, it would be necessary to solve the

incremental problem beyond the linear approximation. Although out of the scopes

of this chapter, we highlight that a weakly nonlinear stability analysis could be per-

formed using a multiple scale expansion [19]. Accordingly, it is possible to derive a

compatibility condition by imposing the vanishing of secular terms in higher-order

elastic solutions, thus unveiling the nature of the elastic bifurcation [25]. For exam-

ple, if the bottom layer can be seen as an elastic halfspace, i.e. assuming Hb << Ht ,

it can be shown that the elastic bifurcation is supercritical if µt/µb > 1.74 and sub-

critical if µt/µb < 1.74 [16]; whilst in the subcritical regime for µt → µb there exists

a localized solution that arises as the limit of modulated periodic solutions with in-

creasingly longer and longer decaying tails. The evolution of each modulated peri-

odic solution can be followed as µt/µb is decreased,finding that there exists a critical

value at which the deformation gradient develops a discontinuity and the solution

becomes a static shock, highlighting the spontaneous formation of a crease [45].

6.2.4 Numerical results: post-buckling behavior

In order to explore the behavior of the system in the post-critical regime, we im-

plemented numerical simulations using a user defined finite element (FE) code im-

plemented in Matlab (The MathWorks, Inc., Natick, Massachusetts, United States;

version 2013a). The geometrical model is composed by two layers, a top layer su-

perposed on a substrate with initial thicknesses Ht and Hb, respectively. The bi-layer

has initial width Lx. Since the value of k is predicted by the linear stability analysis,

Lx can be calculated at nx arbitrarily fixed. The two layers are modeled as incom-

pressible and hyperelastic materials. A Neo-Hookean model is used, and boundary

conditions of zero-displacement at the the bottom of the bi-layer and zero-horizontal

displacement at the side edges are imposed.

We model the growth using a pseudo-dynamic method similar to the one classically

implemented for thermal dilatation. We adopt the following linear evolution law:

g(t) = g(tn−1)dt, (170)

with g(0) = 1 and where t is the time and dt = (tn − tn−1) is the time increment. An

ad hoc time adaptive scheme is implemented, where the time step automatically de-

creases by 50% once the number of Newton iterations exceeds seven, and increases

the time step size by 10% otherwise, as done in [92]. The initial, the minimum and

the maximum time steps are manually set to 102, 103 and 102, respectively. A si-
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nusoidal perturbation is introduced as a small imperfection in the initial mesh, with

a small amplitude of 0.005Ht and the critical wavenumber predicted by the linear

stability analysis.

We used linear elements with 4 integration points, building the mesh with 400 ele-

ments in the x-direction and 150 elements in the z-direction, respectively 100 ele-

ments for the substrate and 50 for the film.

Validation of the numerical code against the theoretical results First, we val-

idate the FE code by comparing the critical strain values in numerical simulation

with the theoretical predictions from the linear stability analysis. The criterion for

such a comparison is based on the energy considerations, since we expect that the

selected pattern will minimizes the total elastic energy of the system. Before the on-

set of the pattern transition, the solution with the minimal elastic energy is the basic

homogeneous deformation. Due to the spatial incompatibility of the growth pro-

cess, residual stresses accumulate until a marginally stable growth value is reached.

At this point, the system bifurcates into a solution with a lower energy than the one

associated with the basic homogeneous solution.

Here we identify the critical strain as the value of εcr = (1− λx) = (g− 1)/g at

which the ratio E/E0 between the total current elastic energy and the basic elastic

energy has decreased by more than 1% of its initial value. The corresponding energy

plots are depicted in Figure 14(left) at different values of the elastic ratio µt/µb.
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Fig. 14 Left: Ratio between the total current elastic energy in the numerical simulations E and the

elastic energy of the basic homogeneous solution E0 versus the axial strain ε = (1−λx) at different

values of the elastic ratio µt/µb . Right: Comparison between the marginally stable thresholds

in numerical FE simulations (circles) and the theoretical predictions (solid line) from the linear

stability analysis. We set Hb = 10Ht in all the simulations.

In particular, Figure 14 (right) shown that the critical values resulting from the

numerical simulations are in good agreement with the corresponding theoretical

prediction, thus validating the numerical code.

FE simulations of the post-critical regime Once the FE code has been validated,

we performed numerical simulations in order to investigate the nonlinear pattern
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evolution in the post-critical regime. We depict the emerging morphology of the

growing bi-layer for µt/µb = 30,100 in Figures 15, 16 respectively.

Fig. 15 Morphological evolution of the bi-layered material at different growth ratios. We set

µt/µb = 30, Hb = 10Ht , nx = 1, for which the linear stability analysis predicts kcr = 0.4, εcr = 0.05.

The snapshots are taken for ε = (g − 1)/g = 0 (a), 0.063004 (b), 0.075409 (c), 0.108321 (d),

0.165309 (e), 0.283784 (f).
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Fig. 16 Morphological evolution of the bi-layered material at different growth ratios. We set

µt/µb = 100, Hb = 10Ht , nx = 2, for which the linear stability analysis predicts kcr = 0.23,

εcr = 0.02. The snapshots are taken for ε =(g−1)/g = 0 (a), 0.033173 (b), 0.042321 (c), 0.059083

(d).

Before the critical point is reached, the bi-layered material remains flat. As soon

as the compression reaches the critical value, an undulated pattern develops at the

top surface, forming wrinkles with wavenumber kcr. The depth of the wrinkles in-
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creases whilst increasing the growth, which increases the axial compression. In both

cases we set Hb = 10Ht . The critical values for the wavenumber and the compres-

sion given by the linear stability analysis are kcr = 0.4, εcr = 0.05 for µt/µb = 30,

and kcr = 0.23 , εcr = 0.02 for µt/µb = 100.

In practice, we observe that the surface undulation rapidly grows to form a stable

fold, whose amplitude increases whilst increasing the growth ratio. The amplitude of

the emerging surface fold is depicted in Figure 17 for different values of the elastic

ratio µt/µb. In particular, we show that for µt >> µb the amplitude grows continu-
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Fig. 17 Amplitude of the surface folds in numerical simulations for different values of the elastic

ratio µt/µb at Hb = 10Ht .

ously, thus highlighting the existence of a supercritical bifurcation, as predicted for

the coated elastic half-space.

It is important to highlight that we used linear elements for illustrative purposes.

Nonetheless, it is known that they do not allow to capture the occurrence of sec-

ondary bifurcations, which have been observed in bi-layered materials, possibly

leading to the emergence of more complex patterns characterized by sub-harmonic

resonances [14]. Although out of the scopes of this work, we remind that secondary

bifurcations can be studied using analytic perturbation techniques [44] or more ad-

vances numerical tools [81].



Mathematical modeling of morphogenesis in living materials 55

7 Concluding remarks

In this chapter, we have introduced a continuous chemo-mechanical approach of

morphogenesis, deriving the balance principles and evolution laws for both volu-

metric and interfacial processes. The proposed theory has been applied to the study

of pattern formation for either a fluid-like and a solid-like biological system model,

using both theoretical methods and simulation tools. Nonetheless, it should be re-

minded that biological materials have a wide range of rheological properties in be-

tween such limiting ideal behaviors [115]. Furthermore, it has been recently high-

lighted that morphogenetic processes may involve microstructural rearrangement

processes, such cell duplication and/or migration, which provoke fluid-like stress

relaxation phenomena up to the timescale of days [96, 97]. Thus, there will be the

necessity to integrate the continuous approach with methods of individual cell-based

models in order to capture the microscopic processes at the grain cell scale [35].

Finally, further modelling work should be done to investigate the role of morphogens

in the regulation of growth, shape and size. On one hand, their local concentration

can trigger an increase of mass resulting from a random cellular proliferation. Pre-

ferred orientation may exists in cellular division as well as competition between

different cell populations. On the other hand, further spatial orchestration is needed

in order to transform random proliferations into a uniform growth, which must ul-

timately ceases as the correct size is reached. The control of shape can therefore

depend both on cell number and on overall size, suggesting that the spatial gradient

of morphogens can provide cells a dimension-sensing mechanism. This early vision

was also supported by the discovery that cells have the ability to measure gradients

comparing their own signalling level with those of their neighbours through specific

regulatory pathways [125]. Nevertheless other interpretations are also possible. In

fact, cells can change relative position undergoing a rearrangement process (e.g.

during intercalation), implying that they are able to remodel their adhesive contacts

making use of a mechanical feedback with their environment to adjust their posi-

tion [77]. Giving a practical example, the stop signal for growth, thus determining

the final size, could be triggered by a morphogen gradient level below a minimal

threshold, as well as by a critical increase in tissue compression, causing a progres-

sive inhibition of growth [5]. In summary, the orchestration of shape and size in the

biological realm is more likely based on a combination of mechanical and biochem-

ical feedbacks. Despite of the explosive rate of new knowledge on the biochemistry

of morphogenesis, a major challenge for mathematical modeling is to understand

the local coordination between mechanical properties of the cells and the morpho-

genetic signals for the global orchestration of a macroscopic shape[109].
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