15 research outputs found

    Experimental Multi-state Quantum Discrimination in the Frequency Domain with Quantum Dot Light

    Full text link
    The quest for the realization of effective quantum state discrimination strategies is of great interest for quantum information technology, as well as for fundamental studies. Therefore, it is crucial to develop new and more efficient methods to implement discrimination protocols for quantum states. Among the others, single photon implementations are more advisable, because of their inherent security advantage in quantum communication scenarios. In this work, we present the experimental realization of a protocol employing a time-multiplexing strategy to optimally discriminate among eight non-orthogonal states, encoded in the four-dimensional Hilbert space spanning both the polarization degree of freedom and photon energy. The experiment, built on a custom-designed bulk optics analyser setup and single photons generated by a nearly deterministic solid-state source, represents a benchmarking example of minimum error discrimination with actual quantum states, requiring only linear optics and two photodetectors to be realized. Our work paves the way for more complex applications and delivers a novel approach towards high-dimensional quantum encoding and decoding operations

    Development of a GEM-TPC prototype

    Full text link
    The use of GEM foils for the amplification stage of a TPC instead of a con- ventional MWPC allows one to bypass the necessity of gating, as the backdrift is suppressed thanks to the asymmetric field configuration. This way, a novel continuously running TPC, which represents one option for the PANDA central tracker, can be realized. A medium sized prototype with a diameter of 300 mm and a length of 600 mm will be tested inside the FOPI spectrometer at GSI using a carbon or lithium beam at intermediate energies (E = 1-3AGeV). This detector test under realistic experimental conditions should allow us to verify the spatial resolution for single tracks and the reconstruction capability for displaced vertexes. A series of physics measurement implying pion beams is scheduled with the FOPI spectrometer together with the GEM-TPC as well.Comment: 5 pages, 4 figures, Proceedings for 11th ICATTP conference in como (italy

    A source of entangled photons based on a cavity-enhanced and strain-tuned GaAs quantum dot

    Full text link
    A quantum-light source that delivers photons with a high brightness and a high degree of entanglement is fundamental for the development of efficient entanglement-based quantum-key distribution systems. Among all possible candidates, epitaxial quantum dots are currently emerging as one of the brightest sources of highly entangled photons. However, the optimization of both brightness and entanglement currently requires different technologies that are difficult to combine in a scalable manner. In this work, we overcome this challenge by developing a novel device consisting of a quantum dot embedded in a circular Bragg resonator, in turn, integrated onto a micromachined piezoelectric actuator. The resonator engineers the light-matter interaction to empower extraction efficiencies up to 0.69(4). Simultaneously, the actuator manipulates strain fields that tune the quantum dot for the generation of entangled photons with fidelities up to 0.96(1). This hybrid technology has the potential to overcome the limitations of the key rates that plague current approaches to entanglement-based quantum key distribution and entanglement-based quantum networks. Introductio

    A multi-country test of brief reappraisal interventions on emotions during the COVID-19 pandemic.

    Get PDF
    The COVID-19 pandemic has increased negative emotions and decreased positive emotions globally. Left unchecked, these emotional changes might have a wide array of adverse impacts. To reduce negative emotions and increase positive emotions, we tested the effectiveness of reappraisal, an emotion-regulation strategy that modifies how one thinks about a situation. Participants from 87 countries and regions (n = 21,644) were randomly assigned to one of two brief reappraisal interventions (reconstrual or repurposing) or one of two control conditions (active or passive). Results revealed that both reappraisal interventions (vesus both control conditions) consistently reduced negative emotions and increased positive emotions across different measures. Reconstrual and repurposing interventions had similar effects. Importantly, planned exploratory analyses indicated that reappraisal interventions did not reduce intentions to practice preventive health behaviours. The findings demonstrate the viability of creating scalable, low-cost interventions for use around the world

    Review of: Mechthild von Lutzau: Schulleiterinnen. Opladen u.a.: Verlag Barbara Budrich 2008

    No full text
    Als eine der ersten empirischen Studien zur Thematik in Deutschland untersucht die Arbeit von Mechthild von Lutzau den biographischen Prozess des Aufstiegs von Schulleiterinnen. Sozialisationsfaktoren, Unterstützungssysteme und Leistungsbereitschaft werden ebenso wie Hindernisse in Interviews erfasst. Ergebnisse sind unter anderem, dass Motivationen zum Aufstieg oft schon in der Kindheit gelegt sein können, dass die für Frauen typischen Brüche im Lebenslauf durchaus nicht immer hinderlich sein müssen und dass schließlich Schulleiterinnen neue Formen der Kooperation begründen können.Mechthild von Lutzau presents an empirical study on the biographical process that takes place in the professional advancement of heads of school, one of the first on this topic in Germany. Interviews capture socialization factors, support systems, and motivation as well as barriers. Results of this study include the possibility that motivations for promotion are already solidified in childhood, that typical interruptions in women’s résumés must not always be obstructive, and finally that heads of school can establish new forms of cooperation

    Optimized Electrolyte Loading and Active Film Thickness for Sandwich Polymer Light-Emitting Electrochemical Cells

    No full text
    Effects of ion concentration and active layer thickness play a critical role on the performance of light-emitting electrochemical cells. Expanding on a pioneering materials system comprising the super yellow (SY) polymer and the electrolyte trimethylolpropane ethoxylate (TMPE)/Li+CF3SO3-, it is reported that a slightly lowered salt concentration and layer thickness result in a substantial efficiency increase, and that this increase is confined to a narrow concentration and thickness range. For a film thickness of 70 nm, a blend ratio SY:TMPE:Li+CF3SO3- = 1:0.075:0.0225, and a current of 7.7 mA cm(-2) the current efficacy is 11.6 cd A(-1), on a par with SY light-emitting diodes. The optimized salt content can be explained by increased exciton quenching at higher concentrations and hindered carrier injection and conduction at lower concentrations, while the optical dependence on the layer thickness is due to weak microcavity effects. A comprehensive optical modeling study is presented, which includes the doping-induced changes of the refractive indices and self-absorption losses due the emission-absorption overlap of intrinsic and doped SY. The analysis indicates either a thickness-independent emitter position (EP) close to the anode or a thickness-dependent EP, shifted to the cathode for increased thicknesses

    The dynamic emission zone in sandwich polymer light‐emitting electrochemical cells

    No full text
    In light‐emitting electrochemical cells (LECs), the position of the emission zone (EZ) is not predefined via a multilayer architecture design, but governed by a complex motion of electrical and ionic charges. As a result of the evolution of doped charge transport layers that enclose a dynamic intrinsic region until steady state is reached, the EZ is often dynamic during turn‐on. For thick sandwich polymer LECs, a continuous change of the emission color provides a direct visual indication of a moving EZ. Results from an optical and electrical analysis indicate that the intrinsic zone is narrow at early times, but starts to widen during operation, notably well before the electrical device optimum is reached. Results from numerical simulations demonstrate that the only precondition for this event to occur is that the mobilities of anions (µa) and cations (µc) are not equal, and the direction of the EZ shift dictates µc > µa. Quantitative ion profiles reveal that the displacement of ions stops when the intrinsic zone stabilizes, confirming the relation between ion movement and EZ shift. Finally, simulations indicate that the experimental current peak for constant‐voltage operation is intrinsic and the subsequent decay does not result from degradation, as commonly stated

    The dynamic emission zone in sandwich polymer light‐emitting electrochemical cells

    No full text
    In light‐emitting electrochemical cells (LECs), the position of the emission zone (EZ) is not predefined via a multilayer architecture design, but governed by a complex motion of electrical and ionic charges. As a result of the evolution of doped charge transport layers that enclose a dynamic intrinsic region until steady state is reached, the EZ is often dynamic during turn‐on. For thick sandwich polymer LECs, a continuous change of the emission color provides a direct visual indication of a moving EZ. Results from an optical and electrical analysis indicate that the intrinsic zone is narrow at early times, but starts to widen during operation, notably well before the electrical device optimum is reached. Results from numerical simulations demonstrate that the only precondition for this event to occur is that the mobilities of anions (µa) and cations (µc) are not equal, and the direction of the EZ shift dictates µc > µa. Quantitative ion profiles reveal that the displacement of ions stops when the intrinsic zone stabilizes, confirming the relation between ion movement and EZ shift. Finally, simulations indicate that the experimental current peak for constant‐voltage operation is intrinsic and the subsequent decay does not result from degradation, as commonly stated
    corecore