A quantum-light source that delivers photons with a high brightness and a
high degree of entanglement is fundamental for the development of efficient
entanglement-based quantum-key distribution systems. Among all possible
candidates, epitaxial quantum dots are currently emerging as one of the
brightest sources of highly entangled photons. However, the optimization of
both brightness and entanglement currently requires different technologies that
are difficult to combine in a scalable manner. In this work, we overcome this
challenge by developing a novel device consisting of a quantum dot embedded in
a circular Bragg resonator, in turn, integrated onto a micromachined
piezoelectric actuator. The resonator engineers the light-matter interaction to
empower extraction efficiencies up to 0.69(4). Simultaneously, the actuator
manipulates strain fields that tune the quantum dot for the generation of
entangled photons with fidelities up to 0.96(1). This hybrid technology has the
potential to overcome the limitations of the key rates that plague current
approaches to entanglement-based quantum key distribution and
entanglement-based quantum networks. Introductio