35 research outputs found

    Jet size dependence of single jet suppression in lead-lead collisions at sqrt(s(NN)) = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF
    Measurements of inclusive jet suppression in heavy ion collisions at the LHC provide direct sensitivity to the physics of jet quenching. In a sample of lead-lead collisions at sqrt(s) = 2.76 TeV corresponding to an integrated luminosity of approximately 7 inverse microbarns, ATLAS has measured jets with a calorimeter over the pseudorapidity interval |eta| < 2.1 and over the transverse momentum range 38 < pT < 210 GeV. Jets were reconstructed using the anti-kt algorithm with values for the distance parameter that determines the nominal jet radius of R = 0.2, 0.3, 0.4 and 0.5. The centrality dependence of the jet yield is characterized by the jet "central-to-peripheral ratio," Rcp. Jet production is found to be suppressed by approximately a factor of two in the 10% most central collisions relative to peripheral collisions. Rcp varies smoothly with centrality as characterized by the number of participating nucleons. The observed suppression is only weakly dependent on jet radius and transverse momentum. These results provide the first direct measurement of inclusive jet suppression in heavy ion collisions and complement previous measurements of dijet transverse energy imbalance at the LHC.Comment: 15 pages plus author list (30 pages total), 8 figures, 2 tables, submitted to Physics Letters B. All figures including auxiliary figures are available at http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HION-2011-02

    Measurement of event-shape observables in Z→ℓ+ℓ− events in pp collisions at √ s=7 TeV with the ATLAS detector at the LHC

    Get PDF
    Event-shape observables measured using charged particles in inclusive ZZ-boson events are presented, using the electron and muon decay modes of the ZZ bosons. The measurements are based on an integrated luminosity of 1.1fb11.1 {\rm fb}^{-1} of proton--proton collisions recorded by the ATLAS detector at the LHC at a centre-of-mass energy s=7\sqrt{s}=7 TeV. Charged-particle distributions, excluding the lepton--antilepton pair from the ZZ-boson decay, are measured in different ranges of transverse momentum of the ZZ boson. Distributions include multiplicity, scalar sum of transverse momenta, beam thrust, transverse thrust, spherocity, and F\mathcal{F}-parameter, which are in particular sensitive to properties of the underlying event at small values of the ZZ-boson transverse momentum. The Sherpa event generator shows larger deviations from the measured observables than Pythia8 and Herwig7. Typically, all three Monte Carlo generators provide predictions that are in better agreement with the data at high ZZ-boson transverse momenta than at low ZZ-boson transverse momenta and for the observables that are less sensitive to the number of charged particles in the event.Comment: 36 pages plus author list + cover page (54 pages total), 14 figures, 4 tables, submitted to EPJC, All figures including auxiliary figures are available at http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2014-0

    Production and dispersion of free radicals from transient cavitation bubbles:an integrated numerical scheme and applications

    No full text
    As an advanced oxidation process with a wide range of applications, sonochemistry relies on acoustic cavitation to induce free radicals for degrading chemical contaminants. The complete process includes two critical steps: the radical production inside the cavitation bubble, and the ensuing dispersion of these radicals into the bulk solution. To grasp the physicochemical details in this process, we developed an integrated numerical scheme with the ability to quantitatively describe the radical production-dispersion behavior. It employs coupled simulations of bubble dynamics, intracavity chemical reactions, and diffusion–reaction-dominated mass transport in aqueous solutions. Applying this method to the typical case of argon and oxygen bubbles, the production mechanism for the main radicals is revealed. Moreover, the temporal-spatial distribution of the radicals in the liquid phase is presented. The results demonstrate that the enhanced radical production observed in oxygen bubbles can be traced to the initiation reaction O(2) + H(2)O → OH(•)+HO(•)(2), which requires relatively low activation energy. In the outside liquid region, the dispersion of radicals is limited by robust recombination reactions. The simulated penetration depth of OH(•) is around 0.2 μm and agrees with reported experimental measurements. The proposed numerical approach can be employed to better capture the radical activity and is instrumental in optimizing the engineering application of sonochemistry

    The Development of Swirling Decaying Laminar Flow in an Annular Pipe

    No full text
    Work on the hydrodynamic entry length of pipe and duct flow has been well studied over the years. The assumption of fully developed flows is commonly used in many practical engineering applications (e.g. Moody's chart). For laminar axial pipe flow, the hydrodynamic entry length can be found through the monomial proposed by Kays, Shah and Bhatti (KSB) (Lh=0.056ReDh). In contrast, several approximations exist for fully turbulent flows (i.e. 10Dh-150Dh). Through theoretical and numerical investigations, the hydrodynamic entry length for swirling decaying pipe flow in the laminar regime is investigated. It was found that, the development length Lh for the axial velocity profile changes when a tangential component is added to the mean flow. The reduction in the hydrodynamic length was found to be dependent on the inlet swirl angle θ. The results indicate that a modification can be made on the KSB equation for two-dimensional swirling annular pipe flow

    The Development of Swirling Decaying Laminar Flow in an Annular Pipe

    No full text
    Work on the hydrodynamic entry length of pipe and duct flow has been well studied over the years. The assumption of fully developed flows is commonly used in many practical engineering applications (e.g. Moody's chart). For laminar axial pipe flow, the hydrodynamic entry length can be found through the monomial proposed by Kays, Shah and Bhatti (KSB) (Lh=0.056ReDh). In contrast, several approximations exist for fully turbulent flows (i.e. 10Dh-150Dh). Through theoretical and numerical investigations, the hydrodynamic entry length for swirling decaying pipe flow in the laminar regime is investigated. It was found that, the development length Lh for the axial velocity profile changes when a tangential component is added to the mean flow. The reduction in the hydrodynamic length was found to be dependent on the inlet swirl angle θ. The results indicate that a modification can be made on the KSB equation for two-dimensional swirling annular pipe flow
    corecore