64 research outputs found

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Genomic imprinting of DIO3, a candidate gene for the syndrome associated with human uniparental disomy of chromosome 14.

    No full text
    Individuals with uniparental disomy of chromosome 14 (Temple and Kagami-Ogata syndromes) exhibit a number of developmental abnormalities originating, in part, from aberrant developmental expression of imprinted genes in the DLK1-DIO3 cluster. Although genomic imprinting has been reported in humans for some genes in the cluster, little evidence is available about the imprinting status of DIO3, which modulates developmental exposure to thyroid hormones. We used pyrosequencing to evaluate allelic expression of DLK1 and DIO3 in cDNAs prepared from neonatal foreskins carrying single-nucleotide polymorphisms (SNPs) in the exonic sequence of those genes, and hot-stop PCR to quantify DIO3 allelic expression in cDNA obtained from a skin specimen collected from an adult individual with known parental origin of the DIO3 SNP. In neonatal skin, DLK1 and DIO3 both exhibited a high degree of monoallelic expression from the paternal allele. In the adult skin sample, the allele preferentially expressed is that inherited from the mother, although a different, larger DIO3 mRNA transcript appears the most abundant at this stage. We conclude that DIO3 is an imprinted gene in humans, suggesting that alterations in thyroid hormone exposure during development may partly contribute to the phenotypes associated with uniparental disomy of chromosome 14
    corecore