14 research outputs found

    Carbon-enhanced metal-poor stars in the SDSS-APOGEE data base

    Get PDF
    We identify six new carbon-enhanced metal-poor (CEMP) stars ([C/Fe]>+ 0.7 and [Fe/H] < -1.8) and another seven likely candidates within the APOGEE data base following Data Release 12. These stars have chemical compositions typical of metal-poor halo stars, e.g. mean [a/Fe]=+0.24 +/- 0.24, based on the APOGEE Stellar Parameters and Chemical Abundances Pipeline results. A lack of heavy-element spectral lines impedes further sub-classification of these CEMP stars, however, based on radial velocity (RV) scatter, we predict most are not CEMP-s stars which are typically found in binary systems. Only one object, 2M15312547+4220551, may be in a binary since it exhibits a scatter in its RV of 1.7 +/- 0.6 km s(-1) based on three visits over a 25.98 d baseline. Optical observations are now necessary to confirm the stellar parameters and low metallicities of these stars, to determine the heavy-element abundance ratios and improve the precision in the derived abundances, and to examine their CEMP sub-classifications

    The R-Process Alliance: Fourth Data Release from the Search for R-process-enhanced Stars in the Galactic Halo

    Get PDF
    This compilation is the fourth data release from the R-Process Alliance (RPA) search for r-process-enhanced stars and the second release based on "snapshot" high-resolution (R ~ 30,000) spectra collected with the du Pont 2.5 m Telescope. In this data release, we propose a new delineation between the r-I and r-II stellar classes at [Eu/Fe]=+0.7[\mathrm{Eu}/\mathrm{Fe}]=+0.7, instead of the empirically chosen [Eu/Fe]=+1.0[\mathrm{Eu}/\mathrm{Fe}]=+1.0 level previously in use, based on statistical tests of the complete set of RPA data released to date. We also statistically justify the minimum level of [Eu/Fe] for definition of the r-I stars, [Eu/Fe] > +0.3. Redefining the separation between r-I and r-II stars will aid in the analysis of the possible progenitors of these two classes of stars and determine whether these signatures arise from separate astrophysical sources at all. Applying this redefinition to previous RPA data, the number of identified r-II and r-I stars changes to 51 and 121, respectively, from the initial set of data releases published thus far. In this data release, we identify 21 new r-II, 111 new r-I (plus 3 re-identified), and 7 new (plus 1 re-identified) limited-r stars out of a total of 232 target stars, resulting in a total sample of 72 new r-II stars, 232 new r-I stars, and 42 new limited-r stars identified by the RPA to date

    Atypical Mg-poor Milky Way Field Stars with Globular Cluster Second-generation-like Chemical Patterns

    Get PDF
    We report the peculiar chemical abundance patterns of 11 atypical Milky Way (MW) field red giant stars observed by the Apache Point Observatory Galactic Evolution Experiment (APOGEE). These atypical giants exhibit strong Al and N enhancements accompanied by C and Mg depletions, strikingly similar to those observed in the so-called second-generation (SG) stars of globular clusters (GCs). Remarkably, we find low Mg abundances ([Mg/Fe] < 0.0) together with strong Al and N overabundances in the majority (5/7) of the metal-rich ([Fe/H] gsim −1.0) sample stars, which is at odds with actual observations of SG stars in Galactic GCs of similar metallicities. This chemical pattern is unique and unprecedented among MW stars, posing urgent questions about its origin. These atypical stars could be former SG stars of dissolved GCs formed with intrinsically lower abundances of Mg and enriched Al (subsequently self-polluted by massive AGB stars) or the result of exotic binary systems. We speculate that the stars Mg-deficiency as well as the orbital properties suggest that they could have an extragalactic origin. This discovery should guide future dedicated spectroscopic searches of atypical stellar chemical patterns in our Galaxy, a fundamental step forward to understanding the Galactic formation and evolution

    The R-Process Alliance: Discovery of a Low-alpha, r-process-enhanced Metal-poor Star in the Galactic Halo

    Get PDF
    A new moderately r-process-enhanced metal-poor star, RAVE J093730.5−062655, has been identified in the Milky Way halo as part of an ongoing survey by the R-Process Alliance. The temperature and surface gravity indicate that J0937−0626 is likely a horizontal branch star. At [Fe/H] = −1.86, J0937−0626 is found to have subsolar [X/Fe] ratios for nearly every light, α, and Fe-peak element. The low [α/Fe] ratios can be explained by an ~0.6 dex excess of Fe; J0937−0626 is therefore similar to the subclass of "iron-enhanced" metal-poor stars. A comparison with Milky Way field stars at [Fe/H] = −2.5 suggests that J0937−0626 was enriched in material from an event, possibly a Type Ia supernova, that created a significant amount of Cr, Mn, Fe, and Ni and smaller amounts of Ca, Sc, Ti, and Zn. The r-process enhancement of J0937−0626 is likely due to a separate event, which suggests that its birth environment was highly enriched in r-process elements. The kinematics of J0937−0626, based on Gaia DR2 data, indicate a retrograde orbit in the Milky Way halo; J0937−0626 was therefore likely accreted from a dwarf galaxy that had significant r-process enrichment

    Extremely metal-poor stars from the cosmic dawn in the bulge of the Milky Way

    Get PDF
    This document is the Accepted Manuscript version of the following article: L. M. Howes, et al, ‘Extremely metal-poor stars from the cosmic dawn in the bulge of the Milky Way’, Nature, Vol. 527, November 2015. This manuscript version is made available under the Nature Research’s Conditions of Use, http://www.nature.com/authors/policies/license.html#Self_archiving_policy. The final, published version is available online at DOI: http://www.nature.com/doifinder/10.1038/nature15747. © 2015 Macmillan Publishers Limited. All rights reservedThe first stars are predicted to have formed within 200 million years after the Big Bang, initiating the cosmic dawn. A true first star has not yet been discovered, although stars with tiny amounts of elements heavier than helium ('metals') have been found in the outer regions ('halo') of the Milky Way. The first stars and their immediate successors should, however, preferentially be found today in the central regions ('bulges') of galaxies, because they formed in the largest over-densities that grew gravitationally with time. The Milky Way bulge underwent a rapid chemical enrichment during the first 1-2 billion years, leading to a dearth of early, metal-poor stars. Here we report observations of extremely metal-poor stars in the Milky Way bulge, including one star with an iron abundance about 10,000 times lower than the solar value without noticeable carbon enhancement. We confirm that the most metal-poor bulge stars are on tight orbits around the Galactic Centre, rather than being halo stars passing through the bulge, as expected for stars formed at redshifts greater than 15. Their chemical compositions are in general similar to typical halo stars of the same metallicity although intriguing differences exist, including lower abundances of carbon.Peer reviewedFinal Accepted Versio

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    J-PLUS: The Javalambre Photometric Local Universe Survey

    Get PDF
    The Javalambre Photometric Local Universe Survey (J-PLUS) is an ongoing 12-band photometric optical survey, observing thousands of square degrees of the Northern Hemisphere from the dedicated JAST/T80 telescope at the Observatorio Astrofisico de Javalambre (OAJ). The T80Cam is a camera with a field of view of 2 deg(2) mounted on a telescope with a diameter of 83 cm, and is equipped with a unique system of filters spanning the entire optical range (3500-10 000 angstrom). This filter system is a combination of broad-, medium-, and narrow-band filters, optimally designed to extract the rest-frame spectral features (the 3700-4000 angstrom Balmer break region, H delta, Ca H+K, the G band, and the Mg b and Ca triplets) that are key to characterizing stellar types and delivering a low-resolution photospectrum for each pixel of the observed sky. With a typical depth of AB similar to 21.25 mag per band, this filter set thus allows for an unbiased and accurate characterization of the stellar population in our Galaxy, it provides an unprecedented 2D photospectral information for all resolved galaxies in the local Universe, as well as accurate photo-z estimates (at the delta z/(1 + z) similar to 0.005-0.03 precision level) for moderately bright (up to r similar to 20 mag) extragalactic sources. While some narrow-band filters are designed for the study of particular emission features ([O II]/lambda 3727, H alpha/lambda 6563) up to z < 0.017, they also provide well-defined windows for the analysis of other emission lines at higher redshifts. As a result, J-PLUS has the potential to contribute to a wide range of fields in Astrophysics, both in the nearby Universe (Milky Way structure, globular clusters, 2D IFU-like studies, stellar populations of nearby and moderate-redshift galaxies, clusters of galaxies) and at high redshifts (emission-line galaxies at z approximate to 0.77, 2.2, and 4.4, quasi-stellar objects, etc.). With this paper, we release the first similar to 1000 deg(2) of J-PLUS data, containing about 4.3 million stars and 3.0 million galaxies at r < 21 mag. With a goal of 8500 deg(2) for the total J-PLUS footprint, these numbers are expected to rise to about 35 million stars and 24 million galaxies by the end of the survey

    The R-Process Alliance: A Very Metal-poor, Extremely r-process-enhanced Star with [Eu/Fe] = + 2.2, and the Class of r-III Stars

    No full text
    © 2020. The American Astronomical Society. All rights reserved. We report the discovery of J1521-3538, a bright (V = 12.2), very metal-poor ([Fe/H] = -2.8) strongly r-process-enhanced field horizontal branch star, based on a high-resolution, high signal-to-noise Magellan/MIKE spectrum. J1521-3538 shows the largest r-process element overabundance in any known r-process-enhanced star, with [Eu/Fe] = +2.2, and its chemical abundances of 22 neutron-capture elements closely match the scaled solar r-process pattern. J1521-3538 is also one of few known carbon-enhanced metal-poor stars with r-process enhancement (CEMP-r stars), as found after correcting the measured C abundance for the star's evolutionary status. We propose to extend the existing classification of moderately enhanced () r-I and strongly r-process enhanced () r-II stars to include an r-III class, for r-process stars such as J1521-3538, with [Eu/Fe] >+2.0 and [Ba/Eu] <-0.5, or ≪ 100 times the solar ratio of europium to iron. Using cosmochronometry, we estimate J1521-3538 to be 12.5±5 Gyr and 8.9±5 Gyr, using two different sets of initial production ratios. These ages are based on measurements of the Th line at 4019 Å and other r-process element abundances. This is broadly consistent with the old age of a low-mass, metal-poor field red horizontal branch star. J1521-3538 likely originated in a low-mass dwarf galaxy that was later accreted by the Milky Way, as evidenced by its highly eccentric orbit

    The R-Process Alliance: First Magellan/MIKE Release from the Southern Search for R-process-enhanced Stars

    No full text
    © 2020. The American Astronomical Society. All rights reserved.. Extensive progress has recently been made in our understanding of heavy-element production via the r-process in the universe, specifically with the first observed neutron star binary merger (NSBM) event associated with the gravitational-wave signal detected by LIGO, GW170817. The chemical abundance patterns of metal-poor r-process-enhanced stars provide key evidence for the dominant site(s) of the r-process and whether NSBMs are sufficiently frequent or prolific r-process sources to be responsible for the majority of r-process material in the universe. We present atmospheric stellar parameters (using a nonlocal thermodynamic equilibrium analysis) and abundances from a detailed analysis of 141 metal-poor stars carried out as part of the R-Process Alliance (RPA) effort. We obtained high-resolution "snapshot"spectroscopy of the stars using the MIKE spectrograph on the 6.5 m Magellan Clay telescope at Las Campanas Observatory in Chile. We find 10 new highly enhanced r-II (with [Eu/Fe] > +1.0), 62 new moderately enhanced r-I (+0.3 +0.5) and five new r/s (0.0 < [Ba/Eu] < +0.5) stars. In the process, we discover a new ultra-metal-poor (UMP) star at [Fe/H] = -4.02. One of the r-II stars shows a deficit in a and Fe-peak elements, typical of dwarf galaxy stars. Our search for r-process-enhanced stars by RPA efforts has already roughly doubled the known r-process sample
    corecore